Analisis Sentimen Berbasis Aspek Terhadap Produk Kecantikan Menggunakan Neighbor Weighted K-Nearest Neighbor
Main Article Content
Abstract
Penelitian ini bertujuan untuk menguji performansi Neighbor Weighted K-Nearest Neighbor (NWKNN) dalam menangani dataset yang tidak seimbang dalam kasus analisis sentiment berbasis aspek. Data yang digunakan didalam penelitian ini adalah ulasan produk kecantikan yang berasal dari situs kaggel. Diperoleh data sebanyak 2.449 ulasan. Setiap ulasan produk sebelum masuk ketahapan klasifikasi, melalui preprocessing. Dalam penelitian ini tahapan preprocessing terdiri dari proses casefolding, cleaning, tokenisasi, normalisasi, stemming, convert negasi, dan stopword removal. Agar hasil preprocessing dapat diolah oleh algoritma klasifikasi maka setiap ulasan yang sudah diprepocessing masuk kedalam ekstraksi fitur. Metode ekstraksi fitur yang digunakan dalam penelitian ini adalah TF-IDF. Hasil ekstraksi fitur lah yang masuk kedalam proses klasifikasi. Didalam penelitian ini setiap ulasan melalui proses klasifikasi beberapa kali. Karena dalam penelitian ini dalam penanganan multilabel menggunakan teknik binary relevance. Setiap klasifikasi menggunakan NWKNN. Pengklasifikasian dilakukan sebanyak empat kali sesuai dengan aspek yang digunakan didalam penelitian ini, yaitu: harga, kemasan, efektifitas dan aroma. Sehingga setiap klasifikasi menghasilkan polaritas untuk setiap aspek, yaitu: positif, negative, atau non sentiment. Hasil pengujian perfomansi dengan Confusion Matrix dihasilkan performansi NWKNN lebih tinggi dibandingkan KNN untuk masing-masing aspek, dalam f1-score. Dimana nilai e dan k yang optiman untuk metode NWKNN yaitu nilai k=40 dan e=2. Ini menunjukkan bahwa NWKNN terbukti lebih baik bekerja jika dataset tidak seimbang dibandingkan KNN.
Article Details
Section
Penulis yang menerbitkan dengan jurnal ini setuju pada persyaratan berikut ini:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama, dengan pekerjaan 6 bulan setelah penerbitan secara simultan dengan lisensi di bawah: Creative Commons Attribution License yang memudahkan yang lain untuk berbagi karya dengan pengakuan penerbitan awal dan kepenulisan karya di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non-ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).