Maximum Temperature Prediction in Tanjungpinang City Using the CNN-LSTM Model
Main Article Content
Abstract
The prediction of maximum temperature is important for supporting decision process related to public activities and reducing the consequences of climate change. The goal of this study is to analyze the performance of the CNN-LSTM hybrid method in forecasting maximum temperature in Tanjungpinang City by utilizing average humidity and rainfall as input variables. Historical weather data was obtained through the BMKG website, covering the period from January 1, 2022, to November 30, 2024, and was used as the research dataset. The CNN-LSTM model was developed by optimizing the advantages of CNN in recognizing spatial patterns and the capability of LSTM in capturing temporal patterns. The model was trained using an optimal configuration consisting of 128 CNN filters, a kernel size of 7, 200 LSTM units, a batch size of 16, and 120 epochs. Performance evaluation was conducted using two key metrics: Root Mean Squared Error (RMSE) of 1.65 and Mean Absolute Percentage Error (MAPE) of 4.19%. The findings indicate that the model can be used to predict maximum temperature based on available historical weather data. Additionally, the model has been implemented in a web-based platform that allows users to input historical data and select prediction periods ranging from 1, 3, 7, to 10 days ahead. The prediction results are presented in tables and graphical visualizations to facilitate users in understanding and evaluating the generated information.
Article Details
Section
Penulis yang menerbitkan dengan jurnal ini setuju pada persyaratan berikut ini:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama, dengan pekerjaan 6 bulan setelah penerbitan secara simultan dengan lisensi di bawah: Creative Commons Attribution License yang memudahkan yang lain untuk berbagi karya dengan pengakuan penerbitan awal dan kepenulisan karya di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non-ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).
How to Cite
References
[1] T. Chen, “A series of models based on long short-term memory for temperature prediction,” Highlights in Science, Engineering and Technology, CMLAI 2023, vol. 39, 2023, pp. 1041-1048.
[2] KepriProv, “Peningkatan suhu panas di Kepri dipengaruhi posisi matahari,” 1 Maret 2021. Diakses dari https://kepriprov.go.id/berita/pemprov-kepri/peningkatan-suhu-panas-di-kepri-dipengaruhi-posisi-matahari.
[3] P. Ganguli dan B. Merz, “Observational evidence reveals compound humid heat stress‐extreme rainfall hotspots in India,” Earth's Future, vol. 12, 2024, e2023EF004074..
[4] A. M. Osagie dan E. P. Ogheneofejiro, “Cross correlation analysis on the relationship between maximum temperature and relative humidity in Bida, Niger State,” International Journal of Agricultural Economics, vol. 1, no. 3, pp. 62–66, 2016.
[5] P. R. Naskar dan S. Naskar, “A new neurocomputing approach for medium-range temperature prediction,” Mausam, vol. 73, no. 3, pp. 537–554, 2022.
[6] M. Mushliha, “Implementasi CNN-BiLSTM untuk Prediksi Harga Saham Bank Syariah di Indonesia,” Jambura Journal of Mathematics, vol. 6, no. 2, pp. 195–203, 2024.
[7] J. Badriyah, A. Fariza, dan T. Harsono, “Prediksi curah hujan menggunakan long short-term memory,” Jurnal Media Informatika Budidarma, vol. 6, no. 3, 2022, pp. 1297–1303.
[8] M. Alfandi, Pristiwanto, dan A. M. H. Sihite, “Penerapan Metode CNN-LSTM Dalam Memprediksi Hujan Pada Wilayah Medan,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 6, no. 1, 2022, pp. 490-499.
[9] J. Li, “Gold price prediction based on CNN-LSTM,” Financial Engineering and Risk Management, vol. 7, no. 2, 2024.
[10] P. A. Qori, D. S. Oktafani, dan I. Kharisudin, “Analisis Peramalan dengan Long Short Term Memory pada Data Kasus Covid-19 di Provinsi Jawa Tengah,” PRISMA, vol. 5, pp. 752–758, 2022
[11] N. K. Agusmawati, F. Khoiriyah, dan A. Tholib, “Prediksi harga emas menggunakan metode LSTM dan GRU,” JITET (Jurnal Informatika dan Teknik Elektro Terapan), vol. 11, no. 3, 2023.
[12] K. Jyothi, H. L. Raksha, S. Raksha, G. Upadhya Rakshitha, dan C. B. Sowmyashree, “Food Delivery Time Prediction Using CNN-LSTM,” International Journal of Scientific Research in Engineering and Management (IJSREM), vol. 8, no. 5, 2024.
[13] F. K. T. Putri dan A. D. Wowor, “Implementasi algoritma long short-term memory dalam prediksi konsentrasi gas metana (CH4) di Kota Salatiga,” JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 2, pp. 2580-1643, 2024.
[14] M. D. A. Carnegie dan Chairani, “Perbandingan Long Short Term Memory (LSTM) dan Gated Recurrent Unit (GRU) untuk memprediksi curah hujan,” Jurnal Media Informatika Budidarma, vol. 7, no. 3, pp. 1022–1032, 2023.
[15] Andre dan T. Handhayani, “Implementasi algoritma LSTM untuk memprediksi temperatur di wilayah Ternate, Maluku Utara,” Jurnal Esensi Infokom, vol. 8, no. 1, pp. 26-32, 2024.