Comparative Analysis of DES (Double Exponential Smoothing) and WMA (Weighted Moving Average) Methods in Laptop Sales Forecasting

Main Article Content

Asrul Gunawan
Arief Hermawan
Donny Avianto

Abstract

Rapid technological developments increase demand for electronic devices, especially laptops. Fluctuations in monthly sales are a challenge for companies in determining the optimal amount of inventory. The inability to predict market demand can disrupt inventory management and customer satisfaction. Therefore, accurate sales forecasting is essential for planning marketing and procurement strategies. This study compares two sales forecasting methods, namely Double Exponential Smoothing (DES) and Weighted Moving Average (WMA), to analyze the accuracy of each method. The results showed that the DES method has a better level of accuracy with an average MAPE value of 16.72%, compared to WMA which reached 21.22%. This study provides practical insights for companies in choosing the right forecasting method, in order to improve inventory management, product procurement strategies, and customer satisfaction

Article Details

Section

Articles

Author Biographies

Arief Hermawan, Universitas Teknologi Yogyakarta

Sebagai Penulis Ke 2

Donny Avianto, Universitas Teknologi Yogyakarta

Sebagai Penulis Ke 3

How to Cite

Comparative Analysis of DES (Double Exponential Smoothing) and WMA (Weighted Moving Average) Methods in Laptop Sales Forecasting. (2025). Komputa : Jurnal Ilmiah Komputer Dan Informatika, 14(1), 66-76. https://doi.org/10.34010/komputa.v14i1.15314

References

[1] S. Syafira, J. Hutahaean, and S. Santoso, “Perbandingan Metode SMA dan MWA Dalam Memprediksi Jumlah Penjualan Alat Olahraga,” Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 617–631, 2022, doi: 10.47065/bits.v3i4.1409.

[2] A. A. Dewi and D. Idayani, “the Comparison of Simple Moving Average and Double Exponential Smoothing Methods in Predicting New Debtors,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 9, no. 3, pp. 369–376, 2023, doi: 10.33330/jurteksi.v9i3.2254.

[3] N. Putu, V. Ginanti, C. Wiedyaningsih, and E. Yuniarti, “Jurnal Farmasi Sains dan Praktis COMPARISON OF FORECASTING DRUG NEEDS USING TIME SERIES METHODS IN HEALTHCARE FACILITIES : A,” vol. 10, no. 2, pp. 156–165, 2024.

[4] M. Mardiansyah and F. Amir, “Analisis Perbandingan Akurasi Metode Moving Average dan Metode Exponensial Smoothing dalam Memprediksi Kapasitas Produksi Padi Nasional,” Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 2, pp. 30–38, 2023, doi: 10.34010/komputa.v12i2.10602.

[5] P. Anggraini, M. Amin, and N. Marpaung, “Comparison of Weighted Moving Average Method with Double Exponential Smoothing in Estimating Production of Oil Palm Fruit,” Build. Informatics, Technol. Sci., vol. 4, no. 2, pp. 705–722, 2022, doi: 10.47065/bits.v4i2.2066.

[6] S. Puspasari, R. Gustriansyah, and A. Sanmorino, “Forecasting a museum visit post pandemic using exponential smoothing model,” J. Infotel, vol. 15, no. 4, pp. 309–316, 2023, doi: 10.20895/infotel.v15i4.949.

[7] F. Ustadatin, A. Muqtadir, and A. Arifia, “Implementasi Metode Weighted Moving Average (WMA) Pada Prediksi Harga Bahan Pokok,” Komputika J. Sist. Komput., vol. 12, no. 2, pp. 83–90, 2023, doi: 10.34010/komputika.v12i2.10304.

[8] F. C. Yulianto and N. Latifah, “Peramalan Penjualan Laptop Menggunakan Metode Long Short Term Memory ( LSTM ),” vol. 14, no. 2, pp. 428–436, 2024.

[9] H. M. Zhao, H. Di He, K. F. Lu, X. L. Han, Y. Ding, and Z. R. Peng, “Measuring the impact of an exogenous factor: An exponential smoothing model of the response of shipping to COVID-19,” Transp. Policy, vol. 118, pp. 91–100, 2022, doi: 10.1016/j.tranpol.2022.01.015.

[10] G. Moiseev, “Jurnal Pengiriman dan Logistik Asia Perkiraan pasar pengiriman kapal tanker minyak di masa krisis : Aplikasi model pemulusan eksponensial,” vol. 37, pp. 239–244, 2021.

[11] Darussalam and G. Arief, “Jurnal Resti,” Resti, vol. 1, no. 1, pp. 19–25, 2018.

[12] I. Svetunkov, H. Chen, and J. E. Boylan, “A new taxonomy for vector exponential smoothing and its application to seasonal time series,” Eur. J. Oper. Res., vol. 304, no. 3, pp. 964–980, 2023, doi: 10.1016/j.ejor.2022.04.040.

[13] I. Darwati and R. Y. Hayuningtyas, “Metode Simple Moving Average dan Weighted Moving Average Dalam Memprediksi Produksi Beras,” EVOLUSI J. Sains dan Manaj., vol. 11, no. 2, pp. 34–41, 2023, doi: 10.31294/evolusi.v11i2.17267.

[14] M. Asabella and A. Putri, “Prediction of Raw Material Purchases using The Weight Moving Average and Double Exponential Smoothing Methods at CV. Sukses Jaya Putra,” pp. 908–915, 2023, doi: 10.46254/ap03.20220173.

[15] L. S. Marita and I. Darwati, “Prediksi Persediaan Barang Menggunakan Metode Weighted Moving Average, Exponential Smoothing dan Simple Moving Average,” J. Tekno Kompak, vol. 16, no. 1, p. 56, 2022, doi: 10.33365/jtk.v16i1.1484.

[16] R. C. Wulandari, P. Batarius, and ..., “Prediksi Hasil Pertanian Tanaman Pangan Menggunakan Metode Double Exponential Smoothing,” Proc. …, 2023, [Online]. Available: https://conferences.ittelkom-pwt.ac.id/index.php/centive/article/view/255%0Ahttps://conferences.ittelkom-pwt.ac.id/index.php/centive/article/download/255/174

[17] M. Hakimah and M. Kurniawan, “Integrasi Pemulusan Eksponensial Ganda yang Diredam Tren dengan Metode Metaheuristik untuk Mengoptimalkan Prakiraan Nilai Tukar Rupiah terhadap USD pada Periode 2019-2024 Pandemi covid-19,” no. 2, pp. 151–157, 2024.

[18] I Putu Susila Handika and I Kadek Susila Satwika, “Enhancing Sales Forecasting Accuracy Through Optimized Holt-Winters Exponential Smoothing with Modified Improved Particle Swarm Optimization,” J. Nas. Pendidik. Tek. Inform., vol. 12, no. 2, pp. 203–212, 2023, doi: 10.23887/janapati.v12i2.65462.