Heart Disease Prediction Using Random Forest Algorithm And Synthetic Minority Oversampling Technique (SMOTE)
Main Article Content
Abstract
Heart disease is one of the leading causes of death in the world, so early diagnosis is very important. This research develops a web-based heart prediction system using Random Forest algorithm and Streamlit framework. The dataset used consists of 299 samples with 13 attributes, taken from Kaggle. The research stages include data collection, pre-processing, SMOTE technique to handle data imbalance, modeling, evaluation, and system implementation. The resulting model showed 86.58% accuracy on the test data, demonstrating effective working practices in classifying heart disease risk. The system is designed with an interactive interface that makes it easy for users to analyze data and derive predictions. This research provides a technological solution that can assist medical personnel in making an initial diagnosis quickly and accurately, thus accelerating clinical decision-making.
Article Details
Section
Penulis yang menerbitkan dengan jurnal ini setuju pada persyaratan berikut ini:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama, dengan pekerjaan 6 bulan setelah penerbitan secara simultan dengan lisensi di bawah: Creative Commons Attribution License yang memudahkan yang lain untuk berbagi karya dengan pengakuan penerbitan awal dan kepenulisan karya di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non-ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).
How to Cite
References
[1] S. A. Putri, N. Selayanti, and M. Kristanaya, “Penerapan Machine Learning Algoritma Random Forest Untuk Prediksi Penyakit Jantung,” vol. 2024, no. Senada, 2024.
[2] R. Y. Donny Maulana, “IMPLEMENTASI ALGORITMA NAÏVE BAYES UNTUK KLASIFIKASI PENDERITA PENYAKIT JANTUNG DI INDONESIA MENGGUNAKAN RAPID MINER,” SIGMA – J. Teknol. Pelita Bangsa, vol. 84, no. 10, pp. 1511–1518, 2019, doi: 10.1134/s0320972519100129.
[3] Firdlous A.D., “Komparasi Algoritma Klasifikasi Data Mining untuk Memprediksi Penyakit Jantung,” J. Ilmu-ilmu Inform. dan ManajemenSTMIK, vol. 16, no. 1, pp. 79–84, 2022, [Online]. Available: http://ejournal.stmik-sumedang.ac.id/index.php/infomans/article/view/412
[4] F. Muzakki, I. Ubaydillah, N. R. Assyiami, and S. Soleha, “Penerapan Algoritma C4.5 Untuk Prediksi Penyakit Jantung Menggunakan Rapidminer,” J. Komput. Antart., vol. 2, no. 2, pp. 71–79, 2024, doi: 10.70052/jka.v2i2.304.
[5] H. M. Nawawi, J. J. Purnama, and A. B. Hikmah, “Komparasi Algoritma Neural Network Dan Naïve Bayes Untuk Memprediksi Penyakit Jantung,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 189–194, 2019, doi: 10.33480/pilar.v15i2.669.
[6] S. P. R. Yulianto, A. Z. Fanani, A. Affandy, and M. I. Aziz, “Analisis Metode Smoote pada Klasifikasi Penyakit Jantung Berbasis Random Forest Tree,” J. Media Inform. Budidarma, vol. 8, no. 3, p. 1460, 2024, doi: 10.30865/mib.v8i3.7712.
[7] A. Putranto, N. L. Azizah, and A. I. Ratna Ika, “Sistem Prediksi Penyakit Jantung Berbasis Web Menggunakan Metode SVM dan Framework Streamlit,” J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 4, no. 2, pp. 442–452, 2023, [Online]. Available: https://archive.ics.uci.edu/ml/datasets/heart+disease
[8] A. R. Raharja, Jayadi, A. Pramudianto, and Y. Muchsam, “Penerapan Algoritma Decision Tree dalam Klasifikasi Data ‘Framingham’ Untuk Menunjukkan Risiko Seseorang Terkena Penyakit Jantung dalam 10 Tahun Mendatang,” Technol. J., vol. 1, no. 1, 2024, doi: 10.62872/cwgzp962.
[9] A. Atthohiroh, R. Ayu, and S. Maharani, “Penerapan Metode Naive Bayes Untuk Memprediksi Penyakit Jantung,” J. Tek., vol. 3, no. 1, p. 8, 2023, doi: 10.54314/teknisi.v3i1.1252.
[10] A. Ariawan, “Optimasi Prediksi Gagal Jantung dengan Teknik Ensemble Bagging Pada Neural Network,” vol. 5, no. 3, pp. 1000–1009, 2024.
[11] A. Wijayadhi, M. Makmun Effendi, and S. Budi Rahardjo, “Prediksi Penyakit Jantung Dengan Algoritma Regresi Linier,” Bull. Inf. Technol., vol. 4, no. 1, pp. 15–28, 2023, doi: 10.47065/bit.v4i1.463.
[12] “Bagaimana, Kapan dan Mengapa Anda Harus Menormalkan / Standarisasi / Mengubah Skala Data Anda?” [Online]. Available: https://ichi.pro/id/bagaimana-kapan-dan-mengapa-anda-harus-menormalkan-standarisasi-mengubah-skala-data-anda-69304631376127
[13] Dimsyiar M Al Hafiz, Khoirul Amaly, Javen Jonathan, M Teranggono Rachmatullah, and Rosidi, “Sistem Prediksi Penyakit Jantung Menggunakan Metode Naive Bayes,” J. Rekayasa Elektro Sriwij., vol. 2, no. 2, pp. 151–157, 2021, doi: 10.36706/jres.v2i2.29.
[14] N. H. Alfajr and S. Defiyanti, “METODE RANDOM FOREST DAN PENERAPAN PRINCIPAL COMPONENT ANALYSIS ( PCA ),” vol. 12, no. 3, 2024.
[15] M. Anshori, N. Rikatsih, and M. S. Haris, “Prediksi Pasien Dengan Penyakit Kardiovaskular Menggunakan Random Forest,” TEKTRIKA - J. Penelit. dan Pengemb. Telekomun. Kendali, Komputer, Elektr. dan Elektron., vol. 7, no. 2, p. 58, 2023, doi: 10.25124/tektrika.v7i2.5279.
[16] A. Handika Permana, F. Rakhmat Umbara, and F. Kasyidi, “Klasifikasi Penyakit Jantung Tipe Kardiovaskular Menggunakan Adaptive Synthetic Sampling dan Algoritma Extreme Gradient Boosting,” Build. Informatics, Technol. Sci., vol. 6, no. 1, pp. 499–508, 2024, doi: 10.47065/bits.v6i1.5421.