[1] C. Yuan and H. Yang, “Research on k-value selection method of K-Means clustering algorithm,” Third Internatinal Symposium on Inteligent Information Technology and Security Informatics, vol. 2, pp. 226-235, 2019.
[2] V. V, “Customer Segmentation Using Machine Learning,” International Conference on Computational Techniques, Electronics and Mechanical Systems(CTEMS), vol. 08, 2021.
[3] K. Dhiraj, “Implementing Customer Segmentation Using Machine Learning [Beginner Guide],” Hohhot, 2021.
[4] K. R. Shahapure and C. Nicholas, “Cluster Quality Analysis Using Silhouette Score,” in IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), Sydney, 2020.
[5] V.Vijilesh, “CUSTOMER SEGMENTATION USING MACHINE LEARNING,” International Research Journal of Engineering and, vol. 08, 2021.
[6] Z. Xu, Y. Lu and J. Yu, “Research on Mini-Batch Affinity Propagation Clustering Algorithm,” in IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), Shenzhen, 2022.
[7] M. M. Amini and H. Amini, “A comparison of K-means, Mini-batch K-means, and Gaussian mixture models for customer segmentation,” Journal of Business & Economic Research, Vols. 17(2), 1-13, 2019.
[8] d. V. V. Werner, “Imbalanced data preprocessing techniques for machine learning: a systematic mapping study,” Knowl. Inf. Syst., 2023.
[9] I. T. Jolliffe, “Principal component analysis,” Springer, 2020.
[10] A. Mahapatra, A. M. B. Nanda, A. Padhy and I. Padhy, “Concept of outlier study: The management of outlier handling with significance in Inclusive education setting,” Asian Research Journal of Mathematics, pp. 7-25, 2020.
[11] S. S, X. L, R. L, G. F, L. S, W. Z and X. R, “An efficient density-based local outlier detection approach for scattered data,” IEEE Access, vol. 7, 2020.
[12] Y. Roh, G. Heo and S. E. Whang, “ A Survey on Data Collection for Machine Learning: A Big Data - AI Integration Perspective,” IEEE Transactions on Knowledge and Data Engineering, vol. 1, 2019.
[13] K. Phiwhorm, C. Saikaew, C. Leung, P. Polpinit and K. Saikaew, “Adaptive multiple imputations of missing values using the class center,” Big Data, vol. 9, no. 52, 2022.
[14] M. Hasan, M. Alam, S. Roy, A. Dutta, M. Jawad and S. Das, “Missing value imputation affects the performance of machine learning: A review and analysis of the literature,” Inform. Med. Unlocked, vol. 27, 2021.
[15] T. Boeckling, G. De Tre and A. Bronselaer, “Cleaning Data With Selection Rules,” IEEE Access, vol. 10, 2022.
[16] V. Viallon, M. His, S. Rinaldi, M. Breeur, A. Gicquiau, B. Hemon, K. Overvad, A. Tjønneland, A. Rostgaard-Hansen and J. Rothwell, “A New Pipeline for the Normalization and Pooling of Metabolomics Data,” Metabolites, vol. 11, 2021.
[17] B. Deng and X. Li, “A novel normalization method for imbalanced data classification based on deep learning,” Expert Systems with Applications, vol. 16828, p. 199, 2022.
[18] V. Eric, K. Angel and G. Helena, “Measuring the effect of categorical encoders in machine learning tasks using synthetic data,” pp. 92-107, 2021.
[19] A. A. Abu-Hassan and H. Al-Yaqout, “A novel parameter estimation approach for clustering imbalanced data,” Expert Systems with Applications, vol. 113792, p. 116, 2020.
[20] R. Ketan, “Cluster quality analysis using silhouettescore,” M.S. Writing Project, Department of Computer Scienceand Electrical Engineering, 2020.
[21] M. Rodriguez, C. Comin, D. Casanova, O. Bruno, D. Amancio, L. Costa and F. Rodrigues, “Clustering algorithms: A comparative approach,” PLoS ONE, vol. 14, 2019.
[22] C. Patil and I. Baidari, “Estimating the optimal number of clusters k in a dataset using data depth,” Data Sci, vol. 4, pp. 132-140, 2019.
[23] R. S. K and N. C, “Cluster quality analysis using silhouette score,” 2020.
[24] T. Liu, H. Yu and R. Blair, “Stability estimation for unsupervised clustering: A review,” Comput. Stat., vol. 14, 2022.