Perbandingan Algoritma Sobel dan Canny untuk Deteksi Tepi Citra Daun Lidah Buaya
Abstract
Penyakit daun yang umum terjadi pada tanaman lidah buaya, seperti busuk daun, busuk akar, infeksi bakteri, dan serangan virus, dapat menimbulkan kerusakan yang cukup parah. Identifikasi penyakit-penyakit tersebut masih mengandalkan pengalaman petani dan seringkali menimbulkan interpretasi yang salah. Solusi modern telah ditemukan melalui penerapan teknologi informasi, khususnya di bidang pengolahan citra digital. Dengan menggunakan metode ini, diagnosis penyakit pada daun lidah buaya dapat ditingkatkan melalui deteksi tepi objek pada gambar daun. Hasil deteksi tepi ini memungkinkan mengidentifikasi gejala penyakit dengan lebih akurat. Dalam konteks ini, algoritma Canny dan Sobel, dua algoritma yang umum digunakan untuk deteksi tepi pada gambar, terbukti menjadi pilihan yang efektif. Dengan menggunakan metode tersebut, gambar tepi daun lidah buaya dapat diidentifikasi secara akurat. Ini adalah langkah penting dalam mendukung petani dalam diagnosis dini penyakit dan mengambil tindakan tepat waktu untuk mengatasi masalah ini. Penelitian ini bertujuan untuk mendapatkan algoritma terbaik pendeteksian tepi daun lidah buaya berdasarkan nilai Mean Squared Error (MSE) dan Peak Signal-to-Noise Ratio (PSNR). Hasil pengujian menunjukkan bahwa algoritma Sobel memberikan hasil yang lebih baik dengan rata-rata pengukuran MSE sebesar 2781.88 dan rata-rata PSNR sebesar 14.04, sedangkan algoritma Canny memiliki rata-rata MSE sebesar 3542.02 dan rata-rata PSNR sebesar 12.92.