[1] E. Susanti, “Glosarium Kosakata Bahasa Indonesia Dalam Ragam Media Sosial,” DIALEKTIKA: Jurnal Bahasa, Sastra, dan Pendidikan Bahasa dan Sastra Indonesia, hal. 229-250, 2016.
[2] I. Alfina, D. Sigmawaty, F. Nurhidayati dan A. N. Hidayanto, “Utilizing Hashtags for Sentiment Analysis of Tweets in The Political Domain,” Proceedings of the 9th International Conference on Machine Learning and Computing, hal. 43-47, 2017.
[3] Databoks, “Berapa Pengguna Media Sosial Indonesia?,” Januari 2019. [Online]. Available: https://databoks.katadata.co.id/datapublish/2019/02/08/berapa-pengguna-media-sosial-indonesia.
[4] FBI, “Hate Crime Statistics,” U.S. Department of Justice, Washington, DC, 2018.
[5] B. Polri, “Statistik,” 2019. [Online]. Available: https://patrolisiber.id/statistic.
[6] D. P. N. Lyrawati, “Deteksi Ujaran Kebencian Pada Twitter Menjelang Pilpres 2019 Dengan Machine Learning,” Jurnal Ilmiah Matematika, vol. 7, no. 3, 2019.
[7] P. Fortuna dan S. Nunes, “A Survey on Automatic Detection of Hate Speech in Text,” ACM Computing Surveys, hal. 1-30, 2018.
[8] P. Liu, X. Qiu dan X. Huang, “Recurrent Neural Network for Text Classification with Multi-Task Learning,” International Joint Conference on Artificial Intelligence, 2016.
[9] T. H. Nguyen dan K. Shirai, “PhraseRNN: Phrase Recursive Neural Network for Aspect-based Sentiment Analysis,” Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, hal. 2509–2514, 2015.
[10] T. Davidson, D. Warmsley, M. Macy dan I. Weber, “Automated Hate Speech Detection and the Problem of Offensive Language,” Proceedings of the 11th International AAAI Conference on Web and Social Media, hal. 512-515, 2017.
[11] Z. Mossie dan J.-H. Wang, “Vulnerable community identification using hate speech detection,” Information Processing and Management, vol. 57, no. 3, 2019.
[12] P. T. Hung dan K. Yamanishi, “Word2vec Skip-Gram Dimensionality Selection via Sequential Normalized Maximum Likelihood,” Entropy, vol. 23, no. 8, hal. 997, 2021.
[13] J. A. Bullinaria, “Recurrent Neural Networks,” 2015. [Online]. Available: http://www.cs.bham.ac.uk.
[14] K. S. Tai, R. Socher dan C. D. Manning, “Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks,” Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), hal. 1556–1566, 2015.
[15] X. Chen, X. Qiu, C. Zhu, S. Wu dan X. Huang, “Sentence Modeling with Gated Recursive Neural Network,” Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, hal. 793-798, 2015.
[16] R. Socher, C. C.-Y. Lin, A. Y. Ng dan C. D. Manning, “Parsing Natural Scenes and Natural Language with Recursive Neural Networks,” Proceedings of the 28th international conference on machine learning (ICML-11), hal. 129-136, 2011.
[17] J. Pardede dan M. G. Husada, “Comparison of VSM, GVSM, and LSI in Information Retrieval For Indonesian Text,” Jurnal Teknologi Malaysia, vol. 78, no. 2180–3722, hal. 5-6, 2015.