Analisis Perbandingan Akurasi Metode Moving Average dan Metode Exponensial Smoothing dalam Memprediksi Kapasitas Produksi Padi Nasional
Main Article Content
Abstract
Pengelolaan persediaan padi merupakan aspek penting yang perlu ditingkatkan oleh para pemangku kepentingan guna mencapai keseimbangan antara persediaan dan konsumsi beras. Bullwhip Effect (BE) telah menjadi perhatian khusus dalam rantai pasokan selama pandemi, terutama dengan adanya komponen permintaan musiman dan nonmusiman. Peramalan kebutuhan produksi padi diperlukan untuk mengatasi masalah dalam pengolahan data dan situasi di lapangan. Perangkat lunak seperti Production and Operations Management (POM) dapat digunakan untuk peramalan menggunakan logika fuzzy. Dalam era Industri 4.0, sustainable smart manufacturing menjadi hal yang penting. Proyeksi kebutuhan produksi beras nasional dilakukan dengan menggunakan metode moving average dan metode exponential smoothing. Pengujian akurasi dilakukan dengan peramalan menggunakan metode moving average dan exponential smoothing dengan data produksi padi tahun 2010-2019, kemudian hasil peramalan tahun 2020 dari kedua metode tersebut akan dibandingkan dengan data real dan akan diketahui metode mana yang paling mendekati data real. Tujuan utama penelitian ini adalah untuk membandingkan dua metode yaitu metode moving average dan metode exponential smoothing yang digunakan pada perangkat lunak berbasis fuzzy. Hasil pengujian akurasi peramalan produksi beras dengan menggunakan metode moving average dan exponential smoothing yang telah dilakukan menunjukkan bahwa metode moving average lebih akurat dengan selisih 1,0089% dari data sebenarnya, sedangkan metode exponential smoothing memiliki selisih 12,0051% dari data sebenarnya.
Article Details
Section
Penulis yang menerbitkan dengan jurnal ini setuju pada persyaratan berikut ini:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama, dengan pekerjaan 6 bulan setelah penerbitan secara simultan dengan lisensi di bawah: Creative Commons Attribution License yang memudahkan yang lain untuk berbagi karya dengan pengakuan penerbitan awal dan kepenulisan karya di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non-ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).
How to Cite
References
M. E. Hoque, A. Thavaneswaran, S. S. Appadoo, R. K. Thulasiram and B. Banitalebi, "A Novel Dynamic Demand Forecasting Model for Resilient Supply Chains using Machine Learning," 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 2021, pp. 218-227, doi: 10.1109/COMPSAC51774.2021.00040.
A. Galletta, L. Carnevale, A. Buzachis, A. Celesti and M. Villari, "A Microservices-Based Platform for Efficiently Managing Oceanographic Data," 2018 4th International Conference on Big Data Innovations and Applications (Innovate-Data), Barcelona, Spain, 2018, pp. 25-29, doi: 10.1109/Innovate-Data.2018.00011.
Z. L. Chong, K. M. Chan, J. Wang, J. -C. Malela-Majika and S. C. Shongwe, "Overall Performance Comparison of Homogeneously Weighted Moving Average and Double Homogeneously Weighted Moving Average Schemes," 2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, Singapore, 2021, pp. 1225-1229, doi: 10.1109/IEEM50564.2021.9672787.
E. E. Tikhonov, K. A. Chebanov and V. A. Burlyaeva, "Development of Forecasting Theory and Methods for Developing Forecasts in Electroenergetics," 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 2020, pp. 1-5, doi: 10.1109/FarEastCon50210.2020.9271504.
D. Kodaira and J. Kondoh, "Probabilistic Forecasting Model for Non-normally Distributed EV Charging Demand," 2020 International Conference on Smart Grids and Energy Systems (SGES), Perth, Australia, 2020, pp. 623-626, doi: 10.1109/SGES51519.2020.00116.
Q. Wang, H. Hou, B. Zhao, L. Zhang, X. Wu and C. Xie, "Load Forecasting Combining Chaos Theory and Long-Short Term Memory in Absence of Key Information," 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Chengdu, China, 2021, pp. 1618-1623, doi: 10.1109/ICPSAsia52756.2021.9621540.
X. Zhou, S. Yang and S. Sun, "A Deep Learning model for day-ahead load forecasting taking advantage of expert knowledge," 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 2021, pp. 1-5, doi: 10.1109/CIEEC50170.2021.9510666.
P. S and P. D. S, "A Hybrid Demand Forecasting for Intermittent Demand Patterns using Machine Learning Techniques," 2022 1st International Conference on Computational Science and Technology (ICCST), CHENNAI, India, 2022, pp. 557-561, doi: 10.1109/ICCST55948.2022.10040407.
S. Sun, S. Wang, Y. Wei and G. Zhang, "A Clustering-Based Nonlinear Ensemble Approach for Exchange Rates Forecasting," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 6, pp. 2284-2292, June 2020, doi: 10.1109/TSMC.2018.2799869.
H. Yiling and H. Shaofeng, "A Short-Term Load Forecasting Model Based on Improved Random Forest Algorithm," 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), Hefei, China, 2020, pp. 928-931, doi: 10.1109/IFEEA51475.2020.00195.
W. Waheeb, R. Ghazali and H. Shah, "Nonlinear Autoregressive Moving-average (NARMA) Time Series Forecasting Using Neural Networks," 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 2019, pp. 1-5, doi: 10.1109/ICCISci.2019.8716417.
D. M. Khairina, S. Maharani, P. P. Widagdo, Ramlawati and H. R. Hatta, "Forecasting Model of Amount of Water Production Using Double Moving Average Method," 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE), Yogyakarta, Indonesia, 2020, pp. 167-170, doi: 10.1109/IC2IE50715.2020.9274603.
T. Alam and A. AlArjani, "Forecasting CO2 Emissions in Saudi Arabia Using Artificial Neural Network, Holt-Winters Exponential Smoothing, and Autoregressive Integrated Moving Average Models," 2021 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), Jakarta, Indonesia, 2021, pp. 125-129, doi: 10.1109/ICT-PEP53949.2021.9601031.
M. H. Prami Swari, I. P. Susila Handika and I. K. Susila Satwika, "Comparison of Simple Moving Average, Single and Modified Single Exponential Smoothing," 2021 IEEE 7th Information Technology International Seminar (ITIS), Surabaya, Indonesia, 2021, pp. 1-5, doi: 10.1109/ITIS53497.2021.9791516.
T. Panapongpakorn and D. Banjerdpongchai, "Short-Term Load Forecast for Energy Management Systems Using Time Series Analysis and Neural Network Method with Average True Range," 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 2019, pp. 86-89, doi: 10.1109/ICA-SYMP.2019.8646068.
T. Alam, "Predicting Revenues and Expenditures Using Artificial Neural Network and Autoregressive Integrated Moving Average," 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 2020, pp. 1-4, doi: 10.1109/ICCIT-144147971.2020.9213814.
X. Jiao and S. Jia, "Multi-step-ahead Crude Oil Price Forecasting Based on Autoregressive Integrated Moving Average and Improved Particle Swarm Optimization-enhanced Gated Recurrent Unit," 2021 International Conference on Electronic Information Technology and Smart Agriculture (ICEITSA), Huaihua, China, 2021, pp. 374-380, doi: 10.1109/ICEITSA54226.2021.00078.
N. L. Marpaung, R. Amri, Syafitri, E. Ervianto and Nurhalim, "Application of Single Moving Average Method for Population Growth Forecasting," 2021 3rd International Conference on Research and Academic Community Services (ICRACOS), Surabaya, Indonesia, 2021, pp. 134-139, doi: 10.1109/ICRACOS53680.2021.9702041.
J. Pant, R. K. Sharma, A. Juyal, D. Singh, H. Pant and P. Pant, "A Machine-Learning Approach to Time Series Forecasting of Temperature," 2022 6th International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, India, 2022, pp. 1125-1129, doi: 10.1109/ICECA55336.2022.10009165.
M. A. Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ”, JSI, vol. 13, no. 2, pp. 36-45, May 2019.
S. Suparno, R. Anik Rufaidah, “Analisis Perbandingan Metode Moving Average dan Exponential Smoothing untuk Meramalkan Permintaan Produk Turning Pada CV. Gavra Perkasa”, Jurnal Optimalisasi Vol 7, No 2 2021.
S. P. Khan, W. Wahyudin, S. M. Ayuningtyas, W. Rohmah, Z. I. Vindari, A. G. Azzahra, Analisa Perbandingan Nilai Akurasi Exponential Smoothing dan Linier Regresion pada Peramalan Permintaan Part Joint Brake Rod KTMY, Jurnal Serambi Engineering Volume VIII, No.1, Januari 2023.
N. P. L. Santiari, I. G. S. Rahayuda, Analisis Perbandingan Metode Single Exponential Smoothing dan Single Moving Average dalam Peramalan Pemesanan, Jurnal Informatika Universitas Pamulang Vol 6, No 2 2021.
Jefri Junifer Pangaribuan dan Megawaty Lestari. Perbandingan Metode Moving Average (MA) dan Neural Network yang Berbasis Algoritma Backpropagation Dalam Prediksi Harga Saham. Jurnal Information System Development, Volume 5 No.1 Jan 2020. Jakarta: Universitas Pelita Harapan. 2020.