Prediksi Inflasi Indonesia Memakai Model ARIMA dan Artificial Neural Network
Abstract
Inflasi merupakan indikator makro ekonomi yang sangat penting. Berbagai macam metoda prediksi inflasi Indonesia telah dipublikasikan. Namun pencarian metoda prediksi inflasi yang lebih akurat masih menjadi topik menarik. Pada penulisan ini diusulkan sebuah metoda baru untuk prediksi inflasi memakai model ARIMA dan Artificial Neural Network (ANN). Data inflasi yang digunakan adalah data inflasi bulanan year-on-year dari tahun 2010 sampai dengan tahun 2018 yang diterbitkan oleh Badan Pusat Statistik (BPS). Pertama dibuat 2 model ARIMA yaitu model ARIMA tanpa siklus tahunan dan dengan siklus tahunan. Prosedur standar dan diagostics test telah dilakukan antara lain: summary of statistics, analysis of variance (ANOVA), significance of coefficients test, residuals normality, heterocesdacity, dan stability. Dari hasil perbandingan kinerja memakai Root Mean Squared Error (RMSE) diperoleh bahwa model ARIMA dengan siklus tahunan lebih baik. Model tersebut berupa model ARIMA (2,1,0) (2,0,0) [12]. Kemudian, untuk meningkatkan kinerja prediksi inflasi, ANN telah dibuat berbasis model ARIMA tersebut. Model ANN memakai satu hidden layer dan dua neuron. Hasil pengujian menunjukkan bahwa model ANN menghasilkan RMSE yang lebih kecil daripada model ARIMA (2,1,0) (2,0,0) [12]. Hal ini kemungkinan disebabkan oleh kemampuan mengolah hubungan nonlinear antara variabel target dan variabel penjelas.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.