PERAMALAN INFLASI MENGGUNAKAN METODE SARIMA DAN SINGLE EXPONENTIAL SMOOTHING (STUDI KASUS: KOTA BANDUNG)

Authors

  • Rifqi Fahrudin
  • Irfan Dwiguna Sumitra

DOI:

https://doi.org/10.34010/miu.v17i2.3180

Abstract

ABSTRACT

Inflation is one of the economic phenomena that is always interesting to discuss mainly related to its broad impact on macroeconomics, such as economic growth, external balance, competitiveness, interest rates, and even income distribution. Inflation plays an important role in determining economic conditions, so it needs to get serious attention from various circles, especially the monetary authority responsible for controlling inflation. If inflation can be predicted with high accuracy, it can certainly be used as a basis for government policy making in anticipating future economic activity. This study aims to produce inflation forecast data. The method used in this study is the SARIMA method and Single Exponential Smoothing. In forecasting the rate of inflation where data is in the form of time series, the SARIMA method can show more accurate forecasting results than using the SES method. Based on the comparison of the overall forecasting model, the SARIMA model (2,1,1)(1,1,1) 11  has the smallest error value with a MAD value of 0.117, MSE 0.023 and 0.72% for MAPE. From these results it was collected that the inflation forecasting in Bandung using the SARIMA method has a high accuracy value.

Key words: Inflation, Forecasting, SARIMA, SES

 

References

Suseno, S. A. (2009). Inflasi. Jakarta: Pusat Pendidikan dan Studi Kebanksentralan (PPSK) BI.

Swandayani, D. M., & Kusumaningtias, R. (2012). Pengaruh Inflasi, Suku Bunga, Nilai Tukar Valas dan Jumlah Uang Beredar ter-hadap Profitabilitas pada Perbankan Syariah di Indonesia Periode 2005-2009. AKRUAL: Jurnal Akuntansi, 3(2), 147-166.

A. Sofyan, (1984). Teknik dan metode perama-lan, Jakarta Penerbit Fak.Ekonomi Universitas Indonesia.

W. W. S. Wei, (2006). Time Series Analysis Uni-variate and Multivariate Methods SECOND EDI-TION.

Fahrudin, R. (2018, August). Forecasting Tour-ist Visits Using Seasonal Autoregressive Inte-grated Moving Average Method. In IOP Confer-ence Series: Materials Science and Engineer-ing (407.1, p.012148). IOP Publishing.

B. L Bowerman and R. T O`Connell, (2018). Forecasting and time series : an applied ap-proach / Bruce L. Bowerman, Richard T. O`Connell.

Biri, R., Langi, Y. A., & Paendong, M. S. (2013). Penggunaan Metode Smoothing Eksponensial dalam Meramal Pergerakan Inflasi Kota Palu. Jurnal Ilmiah Sains, 13(1), 68-73.

S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman, “Forecasting:

} Methods and Applications,†J. Forecast., p. 1, 1998.

Downloads

Published

2020-02-27

How to Cite

PERAMALAN INFLASI MENGGUNAKAN METODE SARIMA DAN SINGLE EXPONENTIAL SMOOTHING (STUDI KASUS: KOTA BANDUNG). (2020). Majalah Ilmiah UNIKOM, 17(2), 111-120. https://doi.org/10.34010/miu.v17i2.3180