[2] Y. Oktaviani, “Perundungan Dunia Maya (Cyber Bullying) Menurut Undang-Undang RI No. 19 Tahun 2016 Tentang Informasi Transaksi Elektronik dan Hukum Islam,” Universitas Islam Negeri Raden Fatah, Palembang, 2017.
[3] M. Farid Rifai, H. Jatnika, and B. Valentino, “Penerapan Algoritma Naïve Bayes Pada Sistem Prediksi Tingkat Kelulusan Peserta Sertifikasi Microsoft Office Specialist (MOS),” Jurnal Pengkajian dan Penerapan Teknik Informatika (PETIR), vol. 12, no. 2, 2019.
[4] L. A. Andika, P. A. N. Azizah, and Respatiwulan, “Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” Indonesian Journal of Applied Statistics, vol. 2, no. 1, 2019.
[5] G. Singh, B. Kumar, L. Gaur, and A. Tyagi, “Comparison between Multinomial and Bernoulli Naïve Bayes for Text Classification,” in 2019 International Conference on Automation, Computational and Technology Management, ICACTM 2019, Institute of Electrical and Electronics Engineers Inc., Apr. 2019, pp. 593–596. doi: 10.1109/ICACTM.2019.8776800.
[6] N. S. Wardani, A. Prahutama, and P. Kartikasari, “Analisis Sentimen Pemindahan Ibu Kota Negara Dengan Klasifikasi Naïve Bayes untuk Model Bernoulli dan Multinomial,” Jurnal Gaussian, vol. 9, no. 3, pp. 237–246, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
[7] J. Pardede, Y. Miftahuddin, and W. Kahar, “Deteksi Komentar Cyberbullying Pada Media Sosial Berbahasa Inggris Menggunakan Naïve Bayes Classification,” JURNAL INFORMATIKA, vol. 7, no. 1, 2020, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji
[8] H. Ashari, D. Arifianto, and H. Azizah Al Faruq, “Perbandingan Kinerja Algoritma Multinomial Naïve Bayes (MNB), Multivariate Bernoulli dan Rocchio Algorithm dalam Klasifikasi Konten Berita Hoax Berbahasa Indonesia Pada Media Sosial,” Thesis, Universitas Muhammadiyah Jember, Jember, 2020. Accessed: Feb. 27, 2023. [Online]. Available: http://repository.unmuhjember.ac.id/id/eprint/5387
[9] A. F. Rahma, Agussalim, and D. S. Y. Kartika, “Analisis Sentimen Hashtag Kuliner di Indonesia Menggunakan Naive Bayes,” Jurnal Informatika dan Sistem Informasi (JIFoSI), vol. 2, no. 1, 2021.
[10] A. K. Janah, E. D. Wahyuni, and A. A. Arifiyanti, “Klasifikasi Emosi Ulasan Aplikasi Traveloka pada Google Play Menggunakan Naïve Bayes,” Jurnal Informatika dan Sistem Informasi (JIFoSI), vol. 1, no. 3, 2020.
[11] Cita Tiara Hanni, “Cyberbullying Bahasa Indonesia,” kaggle.com, 2021. https://www.kaggle.com/datasets/cttrhnn/cyberbullying-bahasa-indonesia (accessed Nov. 04, 2022).
[12] R. Kurniawan and A. Apriliani, “Analisis Sentimen Masyarakat Terhadap Virus Corona Berdasarkan Opini Dari Twitter Berbasis Web Scrapper,” JURNAL INSTEK Informatika Sains dan Teknologi, vol. 5, no. 1, 2020, Accessed: May 18, 2023. [Online]. Available: https://journal.uin-alauddin.ac.id/index.php/instek/index
[13] A. Iffan Alfanzar and I. Sudanawati Rozas, “Topic Modelling Skripsi Menggunakan Metode Latent Diriclhet Allocation,” Jurnal Sistem Informasi (JSiI), vol. 7, no. 1, pp. 7–13, 2020.
[14] B. K. Hananto, A. Pinandito, and A. P. Kharisma, “Penerapan Maximum TF-IDF Normalization Terhadap Metode KNN Untuk Klasifikasi Dataset Multiclass Panichella Pada Review Aplikasi Mobile,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 12, pp. 6812–6823, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
[15] D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data Untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Journal of Computer Engineering System and Science(CESS), vol. 4, no. 1, 2019.
[16] A. Muzakir, A. Desiani, and A. Amran, “Klasifikasi Penyakit Kanker Prostat Menggunakan Algoritma Naïve Bayes dan K-Nearest Neighbor,” Komputika : Jurnal Sistem Komputer, vol. 12, no. 1, pp. 73–79, May 2023, doi: 10.34010/komputika.v12i1.9629.
[17] B. Kurniawan, M. A. Fauzi, and A. W. Widodo, “Klasifikasi Berita Twitter Menggunakan Metode Improved Naïve Bayes,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 10, 2017, [Online]. Available: http://j-ptiik.ub.ac.id
[18] H. K. C. A. Pratama, W. Suharso, and Q. A’yun, “Pengklasifikasian Kanker Payudara Dan Kanker Paru-Paru Dengan Metode Gaussian Naïve Bayes, Multinomial Naïve Bayes, Dan Bernoulli Naïve Bayes,” Jurnal Smart Teknologi, vol. 3, no. 4, pp. 350–355, 2022, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST
[19] F. Hadaina and U. Budiyanto, “Implementasi Metode Multinomial Naïve Bayes Untuk Sentiment Analysis Terhadap Data Ulasan Produk Colearn Pada Google Play Store,” Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI) Jakarta-Indonesia, 2022, [Online]. Available: https://senafti.budiluhur.ac.id/index.php
- Abstract viewed - 406 times
- PDF downloaded - 549 times
Affiliations
Windha Mega P Dhuhita
Universitas Amikom Yogyakarta
Fritz Zone
Affiliation not stated
How to Cite
Perbandingan Kinerja Algoritma Multinomial dan Bernoulli Naïve Bayes dalam Mengklasifikasikan Komentar Cyberbullying
Vol 12 No 2 (2023): Komputika: Jurnal Sistem Komputer
Abstract
In today's era, amidst the rapid development of technology, many people misuse technology to do unpleasant things to others, including bullying that is done using social media called cyberbullying. Therefore, researchers classify social media comment data to determine whether it includes bullying or not. The purpose of this study is to classify social media comment data, including cyberbullying or not, by first comparing the performance between Naive Bayes Multinomial and Bernoulli algorithms in classifying such comment data. The researchers compared the Naive Bayes Classifier model, Multinomial and Bernoulli, to obtain the best model. The researchers also compared the use of the Bag of Words and TF-IDF feature extraction methods to improve the accuracy of the algorithms used. The results of the study show that the Naive Bayes Multinomial model algorithm obtained higher accuracy and faster average processing time compared to the Bernoulli model. The use of the Bag of Words feature extraction method can also significantly increase accuracy compared to TF-IDF.