Implementasi Sistem Penghitung Kendaraan Otomatis Berbasis Computer Vision
DOI:
https://doi.org/10.34010/komputika.v12i1.9082Abstract
The development of computer technology today is very helpful for humans in completing their work in various fields. One application of computer technology i.e., in the field of computer vision which has a very important role for object recognition. In this study, we designed a computer vision-based automatic vehicle counting system. The system that we created uses the MobileNetV2 Single Shot Multibox Detector (SSD) which is placed on the Raspberry Pi 4 to carry out the process of classifying cars and motorcycles and the raspberry pi 4 also functions as a system controller. This automatic vehicle counter system has been integrated between Raspberry Pi 4 and a mobile application on a smartphone where the smartphone functions to display information such as day, date, month, year and together with the number of cars and motorcycles. We tested this automatic vehicle counting system on steam services (car and motorcycle washing) for 3 days where 10 vehicles were collected every day. The test results show that the system is capable of detecting cars and motorcyles with an average accuracy rate of 46.6%.
Keywords – Vehicle Detection, SSD-MobileNet V2, Computer Vision, Raspberry Pi, Smartphone
References
M. Cahyanti and M. Lamsani, “Perancangan Sistem Informasi Jasa Layanan Pencucian Kendaraan Bermotor,” Sebatik, vol. 25, no. 2, pp. 639–648, 2021, doi: 10.46984/sebatik.v25i2.1530.
Cecep Abdul Cholik, “Perkembangan Teknologi Informasi Komunikasi /ICT Dalam Berbagai Bidang,” J. Fak. Tek., vol. 2, no. 2, pp. 39–46, 2021.
I. A. Hadyningtyas, D. Rahmadani, K. Usman, and S. I. Lestariningati, “Proyeksi Acak dan Teknik Scanning pada Algoritma Sparse Representation based Classification untuk Pengenalan Wajah,” Komputika J. Sist. Komput., vol. 11, no. 2, pp. 177–184, 2022, doi: 10.34010/komputika.v11i2.7201.
D. Indra, R. Satra, H. Azis, A. R. Manga, and H. L, “Detection System of Strawberry Ripeness Using K-Means,” Ilk. J. Ilm., vol. 14, no. 1, pp. 25–31, 2022, doi: 10.33096/ilkom.v14i1.1054.25-31.
D. Indra, E. I. Alwi, and M. Al Mubarak, “Prototipe Sistem Kontrol Pemadam Kebakaran Pada Rumah Berbasis Arduino Uno dan ESP8266,” Komputika J. Sist. Komput., vol. 11, no. 1, pp. 1–8, 2021, doi: 10.34010/komputika.v11i1.4801.
N. D. W. I. Cahyo, “Pengenalan Nomor Plat Kendaraan Dengan Metode Optical Character Recognition,” Ubiquitous Comput. its Appl. J., vol. 2, pp. 75–84, 2019, doi: 10.51804/ucaiaj.v2i1.75-84.
Y. C. Chiu, C. Y. Tsai, M. Da Ruan, G. Y. Shen, and T. T. Lee, “Mobilenet-SSDv2: An Improved Object Detection Model for Embedded Systems,” 2020 Int. Conf. Syst. Sci. Eng. ICSSE 2020, pp. 0–4, 2020, doi: 10.1109/ICSSE50014.2020.9219319.
Z. Munawar et al., Visi Komputer Konsep, Metode dan Aplikasi, Pertama. Bandung: Kaizen Media Publishing, 2023.
S. Xu, J. Wang, W. Shou, T. Ngo, A. M. Sadick, and X. Wang, “Computer Vision Techniques in Construction: A Critical Review,” Arch. Comput. Methods Eng., vol. 28, no. 5, pp. 3383–3397, 2021, doi: 10.1007/s11831-020-09504-3.
J. G. Shanahan, “Introduction to Computer Vision and Realtime Deep Learning-based Object Detection,” Int. Conf. Inf. Knowl. Manag. Proc., pp. 3515–3516, 2020, doi: 10.1145/3340531.3412177.
D. Iskandar Mulyana and M. A. Rofik, “Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5,” J. Pendidik. Tambusai, vol. 6, no. 3, pp. 13971–13982, 2022, doi: 10.31004/jptam.v6i3.4825.
J. S. W. Hutauruk, T. Matulatan, and N. Hayaty, “Deteksi Kendaraan secara Real Time menggunakan Metode YOLO Berbasis Android,” J. Sustain. J. Has. Penelit. dan Ind. Terap., vol. 9, no. 1, pp. 8–14, 2020, doi: 10.31629/sustainable.v9i1.1401.
L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021.
F. Rofii, G. Priyandoko, M. I. Fanani, and A. Suraji, “Peningkatan Akurasi Penghitungan Jumlah Kendaraan dengan Membangkitkan Urutan Identitas Deteksi Berbasis Yolov4 Deep Neural Networks,” Teknik, vol. 42, no. 2, pp. 169–177, 2021, doi: 10.14710/teknik.v42i2.37019.
M. Hidayah, A. N. Irfansyah, and D. Purwanto, “Deteksi Objek Pada Mobil Otonom dengan Kamera Termal Inframerah,” vol. 11, no. 3, 2022.
A. Ojha, S. P. Sahu, and D. K. Dewangan, “Vehicle detection through instance segmentation using mask R-CNN for intelligent vehicle system,” Proc. - 5th Int. Conf. Intell. Comput. Control Syst. ICICCS 2021, no. Iciccs, pp. 954–959, 2021, doi: 10.1109/ICICCS51141.2021.9432374.
T. Yang, R. Liang, and L. Huang, “Vehicle counting method based on attention mechanism SSD and state detection,” Vis. Comput., vol. 38, no. 8, pp. 2871–2881, 2022, doi: 10.1007/s00371-021-02161-y.
Y. Liu and G. Zhang, “Vehicle detection algorithm based on LW-SSD,” J. Phys. Conf. Ser., vol. 1748, no. 3, pp. 1–6, 2021, doi: 10.1088/1742-6596/1748/3/032042.
G. Mahesh Kumar and E. Kumaraswamy, “Smart Traffic Junction Using Raspberry Pi,” IOP Conf. Ser. Mater. Sci. Eng., vol. 981, no. 3, 2020, doi: 10.1088/1757-899X/981/3/032048.
R. O. Ekoputris, 9 Mei 2018, “mobilenet: deteksi objek pada platform mobile”, [Online]. Available: https://medium.com/nodeflux/mobilenet-deteksi-objek-pada-platform-mobile-bbbf3806e4b3.