Analisis Cluster Kondisi Keterampilan, Akses dan Fasilitas Teknologi Informasi dan Komunikasi di Indonesia
DOI:
https://doi.org/10.34010/komputika.v13i1.10796Abstract
In facing the digital transformation era, there are still imbalances in terms of skills, access, and information and communication technology facilities in Indonesia. It is necessary to group areas to identify areas that are still lagging, as evaluation material for equitable development. The clustering of regions is done by comparing the Partitioning and Hierarchical Clustering Methods. The Partitioning Clustering algorithm used is K-Means Clustering, with an optimum number of clusters of 4. The Hierarchical Clustering algorithm used is Agglomerative Ward, with a coefficient value of 0.864. Grouping using the Agglomerative Ward method produces an optimum number of clusters of 3. The Hierarchical Clustering method is better than the Partitioning method, with a Silhouette Value of 0.37.
References
S. ElMassah and M. Mohieldin, “Digital transformation and localizing the Sustainable Development Goals (SDGs),” Ecol. Econ., vol. 169, no. September 2019, p. 106490, 2020, doi: 10.1016/j.ecolecon.2019.106490.
Diana Soeiro, “Smart Cities, Well-Being and Good Busines: The 2030 Agenda and the Role of Knowledge in the Era of Industry 4.0,” in Contributions to Management Science, 2020, pp. 55–67. doi: 10.1007/978-3-030-40390-4_13.
K. Sandkuhl, N. Shilov, and A. Smirnov, “Facilitating digital transformation by multi-aspect ontologies: Approach and application steps,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 1609–1614, 2019, doi: 10.1016/j.ifacol.2019.11.430.
V. Stich, V. Zeller, J. Hicking, and A. Kraut, “Measures for a successful digital transformation of SMEs,” Procedia CIRP, vol. 93, pp. 286–291, 2020, doi: 10.1016/j.procir.2020.03.023.
G. Kuldosheva, Challenges and Opportunities of Digital Transformation in the Public Sector in Transition Economies: Examination of the Case of Uzbekistan, no. 1248. 2021.
S. P. DirectoryTM, “Speedtest Global Index.” https://www.speedtest.net/global-index
GAJAH MADA UNIVERSITY PRESS, Addressing Global Issues With Collective and Concerted Actions: Indonesian Scholar Perspectives for G20 Forum. 2022.
V. Vairinhos, F. Matos, and L. Edvinsson, “People, Intangibles and Digital Transformation,” Contrib. to Manag. Sci., pp. 7–23, 2020, doi: 10.1007/978-3-030-40390-4_2.
N. Dzulvawan and S. Pramana, “Pemetaan Kesiapan Penerapan Telemedika di Indonesia,” Indones. Heal. Inf. Manag. J., vol. 10, no. 2, pp. 118–125, 2022, doi: 10.47007/inohim.v10i2.436.
Badan Pusat Statistik, ISSN : 0126-2912. 2023. [Online]. Available: https://www.bps.go.id/publication/2020/04/29/e9011b3155d45d70823c141f/statistik-indonesia-2020.html
M. I. Manda and S. Ben Dhaou, “Responding to the challenges and opportunities in the 4th industrial revolution in developing countries,” ACM Int. Conf. Proceeding Ser., vol. Part F1481, pp. 244–253, 2019, doi: 10.1145/3326365.3326398.
A. Septiarini, I. A. Thaher, and N. Puspitasari, “Pengelompokan Kualitas Kinerja Pegawai Menggunakan Metode K-Means Clustering,” Komputika J. Sist. Komput., vol. 11, no. 2, pp. 131–141, 2022, doi: 10.34010/komputika.v11i2.5518.
K. Shao, G. Mei, and Y. Wu, “ Investigating changes in global distribution of Ozone in 2018 using k -means clustering algorithm ,” J. Comput. Math. Data Sci., vol. 3, no. March, p. 100028, 2022, doi: 10.1016/j.jcmds.2022.100028.
N. H. M. M. Shrifan, M. F. Akbar, and N. A. M. Isa, “An adaptive outlier removal aided k-means clustering algorithm,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 6365–6376, 2022, doi: 10.1016/j.jksuci.2021.07.003.
A. M. Sikana and A. W. Wijayanto, “Analisis Perbandingan Pengelompokan Indeks Pembangunan Manusia Indonesia Tahun 2019 dengan Metode Partitioning dan Hierarchical Clustering,” J. Ilmu Komput., vol. 14, no. 2, p. 66, 2021, doi: 10.24843/jik.2021.v14.i02.p01.
N. Afira and A. W. Wijayanto, “Analisis Cluster dengan Metode Partitioning dan Hierarki pada Data Informasi Kemiskinan Provinsi di Indonesia Tahun 2019,” Komputika J. Sist. Komput., vol. 10, no. 2, pp. 101–109, 2021, doi: 10.34010/komputika.v10i2.4317.
M. Bipul Hossen and M. Rabiul Auwul, “Comparative Study of K-Means, Partitioning Around Medoids, Agglomerative Hierarchical, and DIANA Clustering Algorithms by Using Cancer Datasets,” Biomed. Stat. Informatics, vol. 5, no. 1, p. 20, 2020, doi: 10.11648/j.bsi.20200501.14.
S. Wijuniamurti, S. Nugroho, and R. Rachmawati, “Agglomerative Nesting (AGNES) Method and Divisive Analysis (DIANA) Method For Hierarchical Clustering On Some Distance Measurement Concepts,” J. Stat. Data Sci., vol. 1, no. 1, pp. 7–11, 2022, doi: 10.33369/jsds.v1i1.21009.
O. Ozdemir and S. Cerman, “Performance Comparison with Hierarchical and Partitional Clustering Methods,” Wseas Trans. Commun., vol. 20, pp. 177–184, 2021, doi: 10.37394/23204.2021.20.23.
X. Han, Y. Zhu, K. M. Ting, and G. Li, “The Impact of Isolation Kernel on Agglomerative Hierarchical Clustering Algorithms,” Pattern Recognit., vol. 139, p. 109517, 2020, doi: 10.1016/j.patcog.2023.109517.
T. Li, A. Rezaeipanah, and E. S. M. Tag El Din, “An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 3828–3842, 2022, doi: 10.1016/j.jksuci.2022.04.010.
M. Fikry et al., “Pengelompokan Daerah di Jawa Timur Berbasis Indikator Kesejahteraan Masyarakat dengan Pendekatan Analisis Cluster Hierarki dan Nonhierarki,” vol. 6, no. 2, pp. 141–151, 2023, doi: 10.12962/j27213862.v6i2.15452.
N. Thamrin and A. W. Wijayanto, “Comparison of Soft and Hard Clustering: A Case Study on Welfare Level in Cities on Java Island,” Indones. J. Stat. Its Appl., vol. 5, no. 1, pp. 141–160, 2021, doi: 10.29244/ijsa.v5i1p141-160.
Q. Iman and A. W. Wijayanto, “Klasifikasi Rumah Tangga Penerima Beras Miskin (Raskin)/Beras Sejahtera (Rastra) di Provinsi Jawa Barat Tahun 2017 dengan Metode Random Forest dan Support Vector Machine,” J. Sist. dan Teknol. Inf., vol. 9, no. 2, p. 178, 2021, doi: 10.26418/justin.v9i2.44137.
A. R. Damayanti and A. W. Wijayanto, “Comparison of Hierarchical and Non-Hierarchical Methods in Clustering Cities in Java Island using the Human Development Index Indicators year 2018,” Eig. Math. J., vol. 4, no. 1, pp. 8–17, 2021, doi: 10.29303/emj.v4i1.89.
N. B. Putri and A. W. Wijayanto, “Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi Website Phishing,” Komputika J. Sist. Komput., vol. 11, no. 1, pp. 59–66, 2022, doi: 10.34010/komputika.v11i1.4350.