Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python
Abstract
Telekomunikasi Indonesia is one of the companies that prioritize customers, but there is no information about customer characteristics. In this research, an analysis of customer characteristics used as a basis for determining customer segmentation and customer profiling for digital products add on Indihome services using the K-Means Algorithm. Determination of the best number of clusters done using the Elbow method and a value of K = 3 obtained, so that customer data grouped into three segments. Customer data processing is divided into 3 simulations with the percentage of train data and test data 80% - 20%, 70% - 30% and 50% - 50%. The data used totaled 1392 records as a population where the data will used to find the characteristics of each data. Cluster evaluations carried out using the Silhouette Index, Davies Bouldin Index, and Calinski Harabasz Index methods. The results of the study show that the third simulation is the best based on cluster evaluation with 50% data train presentation and 50% data test where customer profiling is seen by analyzing the members of each cluster from the third simulation where cluster 0 has 396 customer members with a customer category that provides the biggest profit for the company, cluster 1 has members of 286 customers in the category of customers who unwittingly have great potential in providing benefits for the company, and cluster 2 has a member of 14 customers in the customer category that provides fewer benefits than the cost of providing services.
References
A. Z. Adnan, “Penerapan Strategi Promosi Pada Pemasaran Produk CV. Syntax Corporation Indonesia,†J. Ilm. Indones., vol. 3, no. 7, pp. 14–24, 2018, [Online]. Available: http://jurnal.syntaxliterate.co.id/index.php/syntax-literate/article/view/415. [Accessed: 18-Oct-2019].
F. Nursa, H. Hardisman, and R. Semiarty, “Analisis Segmentasi dan Penentuan Target Pasar Pelanggan Instalasi Rawat Jalan Rumah Sakit Universitas Andalas,†J. Kesehat. Andalas, vol. 8, no. 3, pp. 650–660, 2019, [Online]. Available: http://jurnal.fk.unand.ac.id/index.php/jka/article/view/1054. [Accessed: 18-Oct-2019].
V. R. Hananto, A. D. Churniawan, and A. P. Wardhanie, “Perancangan Analytical CRM untuk Mendukung Segmentasi Pelanggan di Institusi Pendidikan,†J. Ilm. Teknol. Inf. Asia, vol. 11, no. 1, p. 79, 2017, [Online]. Available: https://jurnal.stmikasia.ac.id/index.php/jitika/article/view/55. [Accessed: 18-Oct-2019].
C. Prianto and N. S. Harani, “The data mining analysis to determine the priorities of families who receiving assistance,†J. Phys. Conf. Ser., vol. 1280, no. 2, 2019, [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/1280/2/022027/pdf. [Accessed: 18-Oct-2019].
D. Triyansyah and D. Fitrianah, “Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing,†J. Telekomun. dan Komput., vol. 8, no. 3, p. 163, 2018, [Online]. Available: http://publikasi.mercubuana.ac.id/index.php/Incomtech/article/view/4174. [Accessed: 18-Oct-2019].
B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi RFM Model dan Teknik Clustering,†Jutei, vol. 2, no. 2, pp. 23–32, 2018, [Online]. Available: https://jutei.ukdw.ac.id/index.php/jurnal/article/view/76. [Accessed: 25-Oct-2019].
A. A. Caraka, H. Haryanto, D. P. Kusumaningrum, S. Astuti, F. I. Komputer, and U. D. Nuswantoro, “Logika Fuzzy Menggunakan Metode Tsukamoto,†Techno.COM, vol. 14, no. 4, pp. 255–265, 2015, [Online]. Available: http://publikasi.dinus.ac.id/index.php/technoc/article/view/970. [Accessed: 25-Oct-2019].
F. E. M. Agustin, A. Fitria, and H. A. S, “Implementasi Algoritma K-Means Untuk Menentukan Kelompok Pengayaan Materi Mata Pelajaran Ujian Nasional (Studi Kasus: Smp Negeri 101 Jakarta),†J. Tek. Inform., vol. 8, no. 1, pp. 73–78, 2015, [Online]. Available: http://journal.uinjkt.ac.id/index.php/ti/article/view/1938. [Accessed: 25-Oct-2019].
Asroni and R. Adrian, “Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang,†Ilm. Semesta Tek., vol. 18, no. 1, pp. 76–82, 2015, [Online]. Available: http://journal.umy.ac.id/index.php/st/article/view/708. [Accessed: 25-Oct-2019].
A. F. Harismawan, A. P. Kharisma, and T. Afirianto, “Analisis Perbandingan Performa Web Service Menggunakan Bahasa Pemrograman Python , PHP , dan Perl pada Client Berbasis Android,†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. January, pp. 237–245, 2018, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/781. [Accessed: 25-Oct-2019].
A. T. Rahman, Wiranto, and A. Rini, “Coal Trade Data Clustering Using K-Means (Case Study Pt. Global Bangkit Utama),†ITSMART J. Teknol. dan Inf., vol. 6, no. 1, pp. 24–31, 2017, [Online]. Available: https://jurnal.uns.ac.id/itsmart/article/download/11296/11108. [Accessed: 25-Oct-2019].
A. F. Khairati, A. A. Adlina, G. F. Hertono, and B. D. Handari, “Kajian Indeks Validitas pada Algoritma K-Means Enhanced dan K-Means MMCA,†Pros. Semin. Nas. Mat., vol. 2, pp. 161–170, 2019, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/article/download/28906/12636. [Accessed: 25-Oct-2019].
H. Dhika and F. Destiawati, “Application of Data Mining Algorithm to Recipient of Motorcycle Installment,†ComTech Comput. Math. Eng. Appl., vol. 6, no. 4, p. 569, 2015, [Online]. Available: https://journal.binus.ac.id/index.php/comtech/article/view/2192. [Accessed: 01-Dec-2019].
A. R. Condrobimo, A. V. D. Sano, and H. Nindito, “The Application Of K-Means Algorithm For LQ45 Index on Indonesia Stock Exchange,†ComTech Comput. Math. Eng. Appl., vol. 7, no. 2, p. 151, 2016, [Online]. Available: https://journal.binus.ac.id/index.php/comtech/article/view/2256. [Accessed: 01-Dec-2019].
J. C. Manggala, “Tugas Akhir Implementasi GoBGP Sebagai Aplikasi Control Plan Pada Docker Container,†Universitas Muhammadiyah Malang, 2019.
W. M. P. Dhuhita, “Clustering Menggunakan Metode K-Mean Untuk Menentukan Status Gizi Balita,†J. Inform. Darmajaya, vol. 15, no. 2, pp. 160–174, 2015, [Online]. Available: http://garuda.ristekdikti.go.id/documents/detail/568725. [Accessed: 01-Dec-2019].