Klasifikasi Jenis Jerawat Secara Otomatis Dengan Convolutional Neural Network Menggunakan Arsitektur Resnet-50
DOI:
https://doi.org/10.34010/jamika.v15i1.13712Keywords:
Convolutional Neural Network, Resnet-50, Deep Learning, Image ClassificationAbstract
Acne is a common skin problem that requires different treatments based on its type, such as blackheads, conglobata, and papulopustular. This research develops an automatic acne type classification system using deep learning-based Residual Network (ResNet-50) architecture. With its 50 layers, ResNet-50 is effective in image classification. The objective of of this research is to classify the type of acne from skin images on the face, so that it can help diagnosis and treatment. face, so that it can help diagnosis and treatment. The method used in this research includes several main stages, namely the collection of the dataset, model training using CNN with ResNet-50 architecture, model testing, and performance evaluation. model, and performance evaluation. The dataset was obtained from Roboflow, consisting of three classes: acne-comedonica, acne-conglobata, and acne-papulopustulosa. The process involves image preprocessing, data augmentation, and model parameter adjustment, including Adam's dropout and optimizer techniques. The model can achieve 98.35% accuracy with loss of 0.0489 and the highest validation accuracy of 92.86% with a validation loss of 0.1976. In addition, confusion matrix analysis shows an accuracy result of 93%, which indicates the performance of the model in distinguishing between acne classes effectively. These results show that the model is effective in classifying the types of acne and can have a significant impact in assisting a more accurate and faster diagnosis. more accurate and quicker diagnosis.
References
N. Sifatullah and Zulkarnain, “Jerawat (Acne vulgaris): Review Penyakit Infeksi Pada Kulit,” Prosiding Biologi Achieving the Sustainable Development Goals , no. November, pp. 19–23, 2021, [Online]. Available: http://journal.uin-alauddin.ac.id/index.php/psb
T. IMASARI and F. Emasari, “Deteksi Bakteri Staphylococcus Sp. Penyebab Jerawat Dengan Tingkat Pengetahuan Perawatan Wajah Pada Siswa Kelas Xi Di Smk Negeri 1 Pagerwojo,” Jurnal Sintesis: Penelitian Sains, Terapan dan Analisisnya, vol. 2, no. 2, pp. 58–65, 2022, doi: 10.56399/jst.v2i2.20.
D. Anggraeni, M. Kaniawati, and G. Jafar, “Pendekatan Nanoteknologi Untuk Penghantaran Bahan Aktif Farmasi Dalam Terapi Acne Vulgaris,” Majalah Farmasetika, vol. 8, no. 4, p. 283, 2023, doi: 10.24198/mfarmasetika.v8i4.45498.
S. A. Chintya, S. Khomastin, and L. Farida, “Pengaruh Tingkat Kecemasan Sosial, Depresi Dan Kualitass Hidup Terhadap Acne Vulgaris,” ULIL ALBAB: Jurnal Ilmiah Multidisiplin, vol. 1, no. 6, pp. 1457–1463, 2022.
E. Topang, A. Soekanto, M. W. Sugeng, and R. D. Wulandari, “Hubungan Stres Dengan Kejadian Akne Vulgaris Pada Remaja (Studi Literatur),” Calvaria Medical Journal, vol. 2, no. 1, pp. 36–41, 2024, doi: 10.30742/cmj.v2i1.30.
E. Suryokta, W. Taruklimbong, and H. Sihotang, “Peluang dan Tantangan Penggunaan AI (Artificial Intelligence) dalam Pembelajaran Kimia,” Jurnal Pendidikan Tambusai, vol. 7, no. 3, pp. 26745–26757, 2023.
B. Yanto, L. Fimawahib, A. Supriyanto, B. H. Hayadi, and R. R. Pratama, “Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network,” INOVTEK Polbeng - Seri Informatika, vol. 6, no. 2, p. 259, 2021, doi: 10.35314/isi.v6i2.2104.
D. Aprillia, T. Rohana, T. Al Mudzakir, and ..., “Deteksi Nominal Mata Uang Rupiah Menggunakan Metode Convolutional Neural Network dan Feedforward Neural Network,” KLIK: Kajian Ilmiah …, vol. 4, no. 4, pp. 2068–2077, 2024, doi: 10.30865/klik.v4i4.1711.
N. Mamuriyah and J. Sumantri, “Penerapan Metode Convolution Neural Network (CNN) Pada Aplikasi Automatic Lip Reading,” Journal of Informatics and Telecommunication Engineering, vol. 6, no. 1, pp. 276–287, 2022, doi: 10.31289/jite.v6i1.7523.
F. Paraijun, R. N. Aziza, and D. Kuswardani, “Implementasi Algoritma Convolutional Neural Network Dalam Mengklasifikasi Kesegaran Buah Berdasarkan Citra Buah,” Kilat, vol. 11, no. 1, pp. 1–9, 2022, doi: 10.33322/kilat.v10i2.1458.
I. Suhardin, A. Patombongi, and A. M. Islah, “Mengidentifikasi Jenis Tanaman Berdasarkan Citra Daun Menggunakan Algoritma Convolutional Neural Network,” Simtek : jurnal sistem informasi dan teknik komputer, vol. 6, no. 2, pp. 100–108, 2021, doi: 10.51876/simtek.v6i2.101.
M. O. Nugraha, R. Purnamasari, and S. Aulia, “Klasifikasi Penyakit Berdasarkan Warna Kuku Menggunakan Pengolahan Sinyal Digital (Classification Of Diseases Based On Nail Color Using Digital Signal Processing),” e-Proceeding of Engineering, vol. 8, no. 6, p. 3226, 2022.
P. Mbaba, K. Anwar, S. Rahayu, A. Eka Kartawati, P. Studi Informatika, and F. Matematika dan Ilmu Pengetahuan AlamUniversitas Udayana Bali, “Penerapan Metode Convolution Neural Networks Untuk Mengidentifikasi Wajah Kelelahan,” Jnatia, vol. 1, no. 1, pp. 107–114, 2022, [Online]. Available: https://www.kaggle.com/datasets/davidvazquezcic/yawn-dataset
K. Azmi, S. Defit, and S. Sumijan, “Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” Jurnal Unitek, vol. 16, no. 1, pp. 28–40, 2023, doi: 10.52072/unitek.v16i1.504.
Micheal and E. Hartati, “Klasifikasi spesies kupu kupu menggunakan metode convolutional neural network,” MDP Student Conference2022, vol. 1, no. 1, pp. 569–577, 2022, [Online]. Available: https://jurnal.mdp.ac.id/index.php/msc/article/view/1928/541
E. H. Rachmawanto, D. Hermanto, Z. Pratama, and C. A. Sari, “Performa Convolutional Neural Network Dalam Deep Layers Resnet-50 Untuk Klasifikasi Mri Tumor Otak,” Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi), vol. 8, no. 01, pp. 6–12, 2024, doi: 10.30998/semnasristek.v8i01.7125.
S. P. Ristiawanto, B. Irawan, and C. Setianingsih, “Pengenalan Ekspresi Wajah Berbasis Convolutional Neural Network Menggunakan Arsitektur Residual Network-50,” e-Proceeding of Engineering, vol. 8, no. 5, pp. 6442–6454, 2021.
S. Kirana Wulandari and Jasmir, “Penggunaan resnet-50 untuk deteksi penyakit ikan air tawar di akuakultur studi kasus pada akuakultur asia selatan,” SENABISTEKES, vol. 1, pp. 17–24, 2024, [Online]. Available: https://ejournal.ummuba.ac.id/index.php/SENABISTEKES/article/view/2205/1113
I. Hasan, Suprayogi, and H. B. D, “Klasifikasi Jenis Jerawat Menggunakan Convolutional Neural Networks,” e-Proceeding of Engineering, vol. 8, no. 1, pp. 358–372, 2021.
F. Sudana Putra, Kusrini, and M. P. Kurniawan, “Deteksi Otomatis Jerawat Wajah Menggunakan Metode Convolutional Neural Network (CNN),” Journal of Information Technology, vol. 1, no. 2, pp. 30–34, 2021, doi: 10.46229/jifotech.v1i2.308.
N. IBRAHIM et al., “Klasifikasi Tingkat Kematangan Pucuk Daun Teh menggunakan Metode Convolutional Neural Network,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 10, no. 1, p. 162, 2022, doi: 10.26760/elkomika.v10i1.162.
T. Hidayat, N. Khasanah, D. U. E. Saputri, U. Khultsum, and R. L. Pratiwi, “Klasifikasi Gambar Palmprint Berbasis Multi-Kelas Menggunakan Convolutional Neural Network,” Jurnal Sistem Informasi, vol. 11, no. 1, pp. 01–06, 2022, doi: 10.51998/jsi.v11i1.474.
M Mesran, Sitti Rachmawati Yahya, Fifto Nugroho, and Agus Perdana Windarto, “Investigating the Impact of ReLU and Sigmoid Activation Functions on Animal Classification Using CNN Models,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 8, no. 1, pp. 111–118, 2024, doi: 10.29207/resti.v8i1.5367.
R. Magdalena, S. Saidah, N. K. C. Pratiwi, and A. T. Putra, “Klasifikasi Tutupan Lahan Melalui Citra Satelit SPOT-6 dengan Metode Convolutional Neural Network (CNN),” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 7, no. 3, p. 335, 2021, doi: 10.26418/jp.v7i3.48195.
N. Faridah and B. Sugiantoro, “Analisis Optimasi Pada Algoritma Long Short Term Memory Untuk Memprediksi Harga Saham,” Jurnal Media Informatika Budidarma, vol. 7, no. 1, pp. 575–582, 2023, doi: 10.30865/mib.v7i1.5421.
I. G. T. Suryawan and I. P. A. E. Darma Udayana, “Optimasi Convolutional Neural Network Untuk Deteksi Covid-19 pada X-ray Thorax Berbasis Dropout,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 3, p. 551, 2022, doi: 10.25126/jtiik.2022935143.
R. AGUSTINA, R. MAGDALENA, and N. K. C. PRATIWI, “Klasifikasi Kanker Kulit menggunakan Metode Convolutional Neural Network dengan Arsitektur VGG-16,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 10, no. 2, p. 446, 2022, doi: 10.26760/elkomika.v10i2.446.
