Perbandingan Metode Exponential Smoothing dan Moving Average pada Arus Barang Bongkar
Abstract
In the logistics and distribution sector, an accurate understanding of the patterns of unloaded freight flows is essential for efficient operational planning. In this context, data analysis methods are key to understanding trends, seasonal patterns, and short-term fluctuations in the flow of unloaded goods. The purpose of this research is to understand the difference between Exponential Smoothing and Moving Average forecasting techniques as a more accurate forecasting technique in predicting the volume of unloaded goods flow. The methodology in the data analysis stage in this research consists of four stages, namely data preparation, creating functions, creating GUI, and displaying visualisation results. The conclusion obtained from this research is that the Exponential Smoothing method with an alpha value of 0.9 has results that are close to the actual value that has been determined. This can be seen from the results of the Mean Absolute Error which describes the average absolute prediction error, Mean Squared Error which describes the average of the squares of prediction errors, Mean Absolute Deviation which describes the average prediction error in the same unit as the data and Mean Absolute Percentage Error which describes the average percentage of prediction errors where the resulting values are 388501761.94 for MSE and 2.55 for MAPE values, then for MAE of 14681.39 and for MAD of 14681.39.
References
A. P. Agrippina and F. Y. Pamuji, “Komparasi Peramalan Penerimaan Siswa Baru Menggunakan Metode Exponential Smoothing,” PROSISKO J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 11, no. 1, pp. 35–44, 2024.
H. Syafwan, F. Siagian, P. Putri, M. Handayani, S. H. Tinggi Manajemen Informatika dan Komputer Royal Jln M Yamin No, and S. Utara, “Forecasting Jumlah Pengangguran Di Kabupaten Asahan Menggunakan Metode Weighted Moving Average,” J. Tek. Inform. Kaputama, vol. 5, no. 2, pp. 224–229, 2021.
F. Hamidy and I. Yasin, “Penerapan Metode Moving Average Dalam Penentuan Harga Pokok Penjualan Barang Berbasis Web,” Chain J. Comput. Technol. Comput. Eng. Informatics, vol. 2, no. 2, pp. 67–76, 2024.
V. S. Majiah and S. Kelana, “Pengaruh Moving Average dan Transaction Volume pada Return Saham Perbankan Indonesia,” J. Manaj., vol. 13, no. 1, pp. 1–15, 2024, doi: 10.46806/jm.v13i1.1032.
Sylvia, “Implementasi dan Analisa Metode Peramalan Exponential Smoothing dan Weighted Moving Average Untuk Permintaan Produk Minuman Kopi K di CV Fajar Timur Lestari,” J. Ind. Eng. Manag. Res., vol. 3, no. 4, pp. 139–147, 2020.
S. Adiyono and S. Novianto, “Prediksi Komoditas Pangan Pada Masa Pandemi Dengan Metode Forecasting dan Moving Average,” J. Nas. Teknol. dan Sist. Inf., vol. 7, no. 3, pp. 155–163, 2022, doi: 10.25077/teknosi.v7i3.2021.155-163.
I. Ardiansah, I. F. Adiarsa, S. H. Putri, and T. Pujianto, “Penerapan Analisis Runtun Waktu pada Peramalan Penjualan Produk Organik menggunakan Metode Moving Average dan Exponential Smoothing,” J. Tek. Pertan. Lampung (Journal Agric. Eng., vol. 10, no. 4, p. 548, 2021, doi: 10.23960/jtep-l.v10i4.548-559.
Y. Farida, D. A. Sulistiani, and N. Ulinnuha, “Peramalan Indeks Pembangunan Manusia (Ipm) Kabupaten Bojonegoro Menggunakan Metode Double Exponential Smoothing Brown,” Teorema Teor. dan Ris. Mat., vol. 6, no. 2, pp. 173–183, 2021, doi: 10.25157/teorema.v6i2.5521.
F. Suryani, R. A. Nurul Moulita, and S. Aprilyanti, “Analisis Peramalan Pemasangan Internet dengan Menggunakan Metode Single Moving Average dan Exponential Smoothing Analysis of Internet Installation Forecasting using Single Moving Average and Exponential Smoothing Methods,” J. Ind. Eng. Tridinanti, vol. 1, no. 1, pp. 1–5, 2023, [Online]. Available: http://jietri.univ-tridinanti.ac.id
K. Auliasari, M. Kertaningtyas, and M. Kriswantono, “Penerapan Metode Peramalan Untuk Identifikasi Permintaan Konsumen,” INFORMAL Informatics J., vol. 4, no. 3, p. 121, 2020, doi: 10.19184/isj.v4i3.14615.
A. Hasanah and P. M. Purnama, “Perbandingan Metode Single Moving Average dan Metode Single Exponential Smoothing dalam Peramalan Indeks Pembangunan Manusia di Kabupaten Sumenep,” vol. 2, no. 1, 2024.
W. A. Pratiwi and M. Marizal, “Penerapan Metode Eksponential Smoothing Dalam Memprediksi Hasil Pencapaian Kinerja Pelayanan Perangkat Daerah Dinas Pendidikan Provinsi Riau,” Indones. Counc. Prem. Stat. Sci., vol. I, no. 1, pp. 4–14, 2022, [Online]. Available: https://ejournal.uin-suska.ac.id/index.php/icopsic/article/viewFile/18934/9408
D. Gunawan and W. Joni, “Perancangan Sistem Informasi Purchase Order Menggunakan Metode Single Exponential Smoothing,” J. Mhs. Apl. Teknol. Komput. dan Inf., vol. 2, no. 1, pp. 13–18, 2020.
I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” JOINS (Journal Inf. Syst., vol. 5, no. 2, pp. 250–255, 2020, doi: 10.33633/joins.v5i2.3900.
M. Galih, P. D. Atika, and Mukhlis, “Prediksi Penjualan Menggunakan Algoritma Regresi Linear Di Koperasi Karyawan ‘Usaha Bersama,’” J. Inform. Inf. Secur., vol. 3, no. 2, pp. 193–202, 2023, doi: 10.31599/jiforty.v3i2.1354.
U. Azmi, Z. N. Hadi, and S. Soraya, “ARDL METHOD: Forecasting Data Curah Hujan Harian NTB,” J. Varian, vol. 3, no. 2, pp. 73–82, 2020, doi: 10.30812/varian.v3i2.627.
I. Listiowarni, N. Puspa Dewi, and A. Kartika Widhy Hapantenda, “Perbandingan Metode Double Exponential Smoothng Dan Double Moving Average Untuk Peramalan Harga Beras Eceran Di Kabupaten Pamekasan,” J. Komput. Terap., vol. 6, no. 2, pp. 158–169, 2020, doi: 10.35143/jkt.v6i2.3634.
P. A. Duran, A. V. Vitianingsih, M. S. Riza, A. L. Maukar, and S. F. A. Wati, “Data Mining Untuk Prediksi Penjualan Menggunakan Metode Simple Linear Regression,” Teknika, vol. 13, no. 1, pp. 27–34, 2024, doi: 10.34148/teknika.v13i1.712.
N. A. Puspitasari, “Peramalan Produksi Mentimun Baby (Studi Kasus Pada Titik Kumpul Sayur Pakem),” Universitas Islam Indonesia, 2020.
Arnita, D. Novriyana, F. Marpaung, and Anisa, “Perbandingan Metode Single Exponential Smoothing, Naive Model, dan SARIMA untuk Peramalan Curah Hujan Di Kota Medan,” J. Mat. Stat. Komputasi, vol. 17, no. 1, pp. 117–128, 2020, [Online]. Available: http://dataonline.bmkg.go.id/data_iklim.