Implementasi Decision Tree untuk Prediksi Kelahiran Bayi Prematur

  • Putri Lailatul Rosida Universitas Esa Unggul
  • Mieke Nurmalasari Department of Health Information Management, Faculty of Health and Sciences, Universitas Esa Unggul, Indonesia https://orcid.org/0000-0003-2677-703X
  • Hosizah Hosizah Universitas Esa Unggul
  • Dewi Krismawati Badan Pusat Statistik
Keywords: Decision tree, Kelahiran prematu, Prediksi

Abstract

The early birth of baby in Indonesia is a case that has a very high incidence rate. According to data from the Ministry of Health in 2021, the presentation of premature babies in Indonesia is 84%. The number of infant deaths in Indonesia is still relatively high compared to other ASEAN countries. The purpose of this study was to predict the birth of premature babies with the implementation of decision tree, with this type of predictive analysis research. The population in this study is pregnant women patients with a sample of 350 pregnant women patient data covering the variables studied Age, BMI, Vaginal Discharge, History of Miscarriage, History of Prematurity and Pregnancy Spacing. The prediction was made by halving the training data by 245 and the testing data by 105. The results obtained are the variable Body Mass Index (BMI) is the riskiest factor for premature birth The decision tree model yields an AUC of 91.7%, it can be concluded that the decision tree has a good classification accuracy value.

References

W. Aprilia, “Perkembangan pada masa pranatal dan kelahiran,” Yaa Bunayya J. Pendidik. Anak Usia Dini, vol. 4, no. 1, pp. 40–55, 2020. Available: https://jurnal.umj.ac.id/index.php/YaaBunayya/article/download/6684/4246

F. O. Shariff et al., “G5P4A0 Hamil 28 Minggu dengan Partus Prematurus Imminens ( PPI ) G5P4A0 28 Weeks Pregnant with Imminens Premature Parturition,” vol. 14, no. April 2024, pp. 773–780, 2022, doi: 10.53089/medula.v14i4.1020.

M. Mirawati, Pratiwi Puji Lestari, Rr. Sri Nuriaty Masdiputri, and Mahfuzhah Deswita Puteri, “Faktor yang Berhubungan dengan Berat Bayi Lahir Rendah,” Sehat Rakyat J. Kesehat. Masy., vol. 2, no. 1, pp. 91–98, Feb. 2023, doi: 10.54259/sehatrakyat.v2i1.1502.

M. Warliani, Nilla Mayasari, and Ferius Soewito, “Mengenal Masalah Oromotor pada Bayi Prematur,” J. Indones. Med. Assoc., vol. 70, no. 12, pp. 278–286, 2021, doi: 10.47830/jinma-vol.70.12-2020-157.

Nesty Ladziina Sheliha, “Faktor – faktor yang mempengaruhi kejadian persalinan prematur,” UNISA Digit., p. 9, 2020. Available: http://digilib.unisayogya.ac.id/5211/#

F. Rachman, “Kematian Bayi Di Indonesia Akibat Lahir Prematur,” 2024, 2022. https://validnews.id/nasional/kemenkes-84-kematian-bayi-di-indonesia-akibat-lahir-prematur

U. Hasdiana, Gizi Pada Ibu Hamil, vol. 11, no. 1. 2022. [Online]. Available: http://link.springer.com/10.1007/978-3-319-59379-1%0A

A. Usman, Rosdiana, and A. Misnawati, “Faktor Risiko Kejadian Persalinan Prematur Di Rumah Sakit Umum Polewali Tahun 2021,” J. Kesehat. Lentera Acitya, vol. 8, no. 2, pp. 63–68, 2021. Available: https://lppmfatimaparepare.org/index.php/acitya/article/view/73/60

I. Rahim, R. Fitriani, A. W. Gama, A. Rahman, and Z. Alwi, “Analisis Faktor Risiko Kejadian Persalinan Prematur Di RSUD Haji Makassar Tahun 2021,” J. Kedokt. dan Kesehat., vol. 19, no. 2, p. 132, 2023, doi: 10.24853/jkk.19.2.132-145.

P. Andika, D. A. Ningsi, and R. M. Sari, “Faktor-Faktor Yang Mempengaruhi Persalinan Prematur Di Rsud Dr.M.Yunus Bengkulu,” PREPOTIF J. Kesehat. Masy., vol. 7, no. April, pp. 944–950, 2023. Available: https://journal.universitaspahlawan.ac.id/index.php/prepotif/article/view/13361/11027

S. E. D. Simamora and S. Ronoatmodjo, “Program Magister Epidemiologi, Fakultas Kesehatan Masyarakat, Universitas Indonesia 2 Departemen Epidemiologi, Fakultas Kesehatan Masyarakat, Universitas Indonesia Kampus Baru UI Depok , Jawa Barat – 16424 Indonesia,” J. Kesehat. Reproduksi, vol. 11, no. 1, pp. 89–100, 2020, doi: 10.22435/kespro.v11i1.2753.89-100.

A. Y. Simanjuntak, I. S. E. S. Simatupang, and A. Anita, “Implementasi Data Mining Menggunakan Metode Nave Bayes Classifier Untuk Data Kenaikan Pangkat Dinas Ketenagakerjaan Kota Medan,” J. Sci. Soc. Res., vol. 5, no. 1, p. 85, 2022, doi: 10.54314/jssr.v5i1.804.

P. B. N. Setio, D. R. S. Saputro, and Bowo Winarno, “Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4.5,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 64–71, 2020. Available: https://journal.unnes.ac.id/sju/prisma/article/view/37650

C. O. S. Patricia, “Memprediksi Risiko Penyakit Jantung Menggunakan Metode Decision tree Dengan Validasi Silang,” vol. 3, no. 2, p. 6, 2021. Available: https://repository.unsri.ac.id/41280/

J. C. Mestika, M. O. Selan, and M. I. Qadafi, “Menjelajahi Teknik-Teknik Supervised Learning untuk Pemodelan Prediktif Menggunakan Python,” BIIKMA Bul. Ilm. Ilmu Komput. dan Multimed., vol. 99, no. 99, pp. 216–219, 2022. Available: https://jurnalmahasiswa.com/index.php/biikma/article/view/101/101

A. Purwanto, A. Primajaya, and A. Voutama, “Penerapan Algoritma C4.5 Dalam Prediksi Potensi Tingkat Kasus Pneumonia Di Kabupaten Karawang,” J. Sist. dan Teknol. Inf., vol. 8, no. 4, p. 390, 2020, doi: 10.26418/justin.v8i4.41959.

R. Fitra Arkamil and M. I. Jambak, “Klasifikasi Tindakan Persalinan Pada Pasien Ibu Bersalin Menggunakan Metode Decision tree C4.5,” Media Online), vol. 4, no. 1, pp. 513–523, 2023, doi: 10.30865/klik.v4i1.1168.

H. Saleh, “Analisa Faktor Penyebab Stunting Menggunakan Algoritma C4.5,” Sci. Comput. Sci. Informatics, vol. 3, no. 1, pp. 11–17, 2020. Available: http://jurnal.untad.ac.id/jurnal/index.php/scientico/article/view/15904#

N. Sunanto and G. Falah, “Penerapan Algoritma C4.5 Untuk Membuat Model Prediksi Pasien Yang Mengidap Penyakit Diabetes,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 2, pp. 208–216, Jul. 2022, doi: 10.36341/rabit.v7i2.2435.

S. S. Mukrimaa et al., “Data Mining Algoritma C4.5,” J. Penelit. Pendidik. Guru Sekol. Dasar, vol. 6, no. August, p. 128, 2016. Available: http://lib.unnes.ac.id/33080/6/Buku_Data_Mining.PDF

Published
2024-07-13
How to Cite
[1]
P. Rosida, M. Nurmalasari, H. Hosizah, and D. Krismawati, “Implementasi Decision Tree untuk Prediksi Kelahiran Bayi Prematur”, JAMIKA, vol. 14, no. 2, pp. 178-186, Jul. 2024.