Prediksi Kelulusan Mata Kuliah Mahasiswa Teknologi Informasi Menggunakan Algoritma K-Nearest Neighbor
Abstract
This research aims to develop a predictive model using the K-Nearest Neighbor (KNN) method to forecast the course completion of students in the Information Technology program. The issue at hand is the uncertainty in predicting student success based on historical data and specific attributes. This study focuses on the importance of understanding the factors that influence student success in the Database Management Systems course to provide accurate predictions and help improve student pass rates in this course. The objective of this research is to build a predictive model using the KNN algorithm and to implement this model using the PHP programming language. The study aims to offer valuable insights for educational institutions to enhance teaching and learning processes and to expand understanding of data mining concepts in specific case studies. The prediction aims to determine whether a student will pass or fail the Database Management Systems course based on predetermined training and testing data. By calculating the nearest distance between the training data and the test data. The results showed an accuracy rate of 90% for predicting course completion using k=5, with a dataset consisting of 40 training data points and 20 testing data points.
References
R. A. Manullang and F. A. Sianturi, “Penerapan Algoritma K-Nearest Neighbour Untuk Memprediksi Kelulusan Mahasiswa,” JIKOMSI (Jurnal Ilmu Komput. dan Sist. Informasi), vol. 4, no. 2, pp. 42–50, 2021.
D. Prasetyawan and R. Gatra, “Algoritma KNN Untuk Memprediksi Prestasi Mahasiswa Berdasarkan Latar Belakang Pendidikan.pdf,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 7, no. 1, pp. 56–67, 2022.
M. Mustika et al., Data Mining dan Aplikasinya. Penerbit Widina Bhakti Persada, 2021.
A. D. A. Putra and S. Juanita, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.
P. Subekti, T. D. Andini, and M. Islamiyah, “Sistem Penentuan Konsentrasi Jurusan Bagi Mahasiswa Informatika Menggunakan Metode K-Means Di Institut Asia Malang,” J. Manaj. Inform., vol. 12, no. 1, pp. 25–39, 2022, doi: 10.34010/jamika.v12i1.6452.
S. B. Rahardjo, W. W, A. Sulistyohati, and U. U, “Penerapan Data Mining Untuk Menganalisa Pola Pembelian Sayuran Hidroponik Menggunakan Metode Algoritma Apriori,” J. Pract. Comput. Sci., vol. 1, no. 2, pp. 38–49, 2022, doi: 10.37366/jpcs.v1i2.939.
R. Harun, K. C. Pelangi, and Y. Lasena, “Penerapan Data Mining Untuk Menentukan Potensi Hujan Harian Dengan Menggunakan Algoritma K Nearest Neighbor (KNN),” MISI (Jurnal Manaj. Inform. Sist. Inf., vol. 3, no. 1, pp. 8–15, 2020.
N. Wati, “Prediksi Kelulusan Mahasiswa Menggunakan K-Nearest Neighbor Berbasis Particle Swarm Optimization,” JTIIJurnal Teknol. Inf. Indones., vol. 6, no. 2, pp. 118–127, 2021.
F. Marisa et al., “Pengukuran Tingkat Kematangan Kopi Arabika Menggunakan Algoritma K-Nearest Neighbour,” JIMP J. Inform. Merdeka Pasuruan, vol. 6, no. 3, pp. 4–8, 2021.
M. N. Maskuri, K. Sukerti, and R. M. Herdian Bhakti, “Penerapan Algoritma K-Nearest Neighbor (KNN) untuk Memprediksi Penyakit Stroke Stroke Desease Predict Using KNN Algorithm,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 1, pp. 130–140, 2022.
T. K. Janubiya, S. Andryana, and I. D. Sholihati, “E-Recruitment Menggunakan Metode Simple Additive Weighting dan Algoritma K-Nearest Neighbor,” J. Sains Komput. Inform., vol. 6, pp. 161–171, 2022.
S. Sukamto, Y. Adriyani, and R. Aulia, “Prediksi Kelompok UKT Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” JUITA J. Inform., vol. 8, no. 1, p. 121, 2020, doi: 10.30595/juita.v8i1.6267.
S. R. Raysyah, Veri Arinal, and Dadang Iskandar Mulyana, “Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode Knn Dan Pca,” JSiI (Jurnal Sist. Informasi), vol. 8, no. 2, pp. 88–95, 2021, doi: 10.30656/jsii.v8i2.3638.
N. A. Widiastuti, M. Azhar, and H. Mulyo, “Implementasi Algoritma K-Nearest Neighbor untuk Klasifikasi Jurusan pada Peserta Didik Baru,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 14, no. 2, pp. 195–208, 2023, doi: 10.24176/simet.v14i2.10092.
A. Hernandes, S. Kurnia Gusti, F. Syafria, L. Handayani, and S. Ramadhani, “Klasifikasi Data Penerimaan Zakat dengan Algoritma K-Nearest Neighbor,” Media Online, vol. 4, no. 3, pp. 1632–1640, 2023, doi: 10.30865/klik.v4i3.1528.
A. Muzakir, “Perangkat Lunak Mobile Untuk Mendeteksi Daun Pada Tanaman Menggunakan Algoritma K-Nearest Neighbor (K-NN),” J. Inf. Technol. Ampera, vol. 2, no. 2, pp. 117–126, 2021, doi: 10.51519/journalita.volume2.isssue2.year2021.page117-126.
Q. A’yuniyah and M. Reza, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Di Sma Negeri 15 Pekanbaru,” Indones. J. Inform. Res. Softw. Eng., vol. 3, no. 1, pp. 39–45, 2023, doi: 10.57152/ijirse.v3i1.484.
A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020, doi: 10.33096/ijodas.v1i2.11.
S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 6, no. 2, pp. 118–127, 2021, doi: 10.31294/ijcit.v6i2.10438.
M. Jannah and N. Humaira, “Implementasi Metode Euclidean Distance Untuk Ekstraksi Fitur Jarak Pada Citra Skeleton,” J. Ilm. Inform. Komput., vol. 24, no. 2, pp. 134–139, 2019, doi: 10.35760/ik.2019.v24i2.2368.
R. M. Sagala, “Prediksi Kelulusan Mahasiswa Menggunakan Data Mining Algoritma K-Means,” TeIKa, vol. 11, no. 2, pp. 131–142, 2021, doi: 10.36342/teika.v11i2.2610.
R. Musfikar, H. Apriadinata, and B. Yusuf, “Aplikasi Prediksi Prestasi pada Siswa Menggunakan Algoritma C4.5,” J. Manaj. Inform., vol. 13, no. 2, pp. 148–162, 2023, doi: 10.34010/jamika.v13i2.10649.