Aplikasi Sistem Pakar Dengan Metode Naive Bayes untuk Mendeteksi Penyakit Diabetes
DOI:
https://doi.org/10.34010/jamika.v15i1.12391Keywords:
Diabetes, Klasifikasi, Akurasi, Naive Bayes, Sistem PakarAbstract
Data IDF states that there will be 19.47 million people with diabetes in Indonesia in 2021. One of the causes is a lack of awareness of healthy food consumption which has an impact on increasing body weight due to high blood sugar. In overcoming this incident, it is necessary to implement an application to detect diabetes. The use of an expert system provides many conveniences for someone in health examinations and also for health workers or doctors in diagnosing a disease. In diagnosing, an expert system requires a method, one of which is the Naive Bayes classification method. In this study, data on diabetes sufferers was taken from the Kaggle site as training data, with a total of 768 data from nine attributes and one of the attributes as a label. To make it easier to operate the application, only four attributes were used as test samples based on calculating the highest correlation value, namely pregnancy, glucose, BMI and age. Next, the opinion of a health expert, namely a specialist in internal medicine, and calculating the accuracy value of diabetes data using the Naïve Bayes algorithm. The resulting data accuracy value is 79%. Implementation of a web-based expert system application using the PHP programming language and MySQL database. This expert system application aims to detect diabetes based on the results of a health check to predict whether it is positive for diabetes or negative for diabetes.
References
H. Sitorus, V. Yasin, and A. B. Yulianto, “Perancangan sistem pakar diagnosis penyakit diabetes berbasis web menggunakan algoritma naive bayes,” Jurnal Sains dan Teknologi Widyaloka, vol. 1, no. 1, pp. 135–144, Jan. 2022.
Y. B. Widodo, S. A. Anggraeini, and T. Sutabri, “Perancangan Sistem Pakar Diagnosis Penyakit Diabetes Berbasis Web Menggunakan Algoritma Naive Bayes,” Jurnal Teknologi Informatika dan Komputer, vol. 7, no. 1, pp. 112–123, Mar. 2021, doi: 10.37012/jtik.v7i1.507.
R. Antoni, “SISTEM PAKAR DETEKSI PENYAKIT DIABETES MELLITUS DENGAN MENGGUNAKAN PENDEKATAN NAÏVE BAYESIAN BERBASIS WEB (Studi Kasus : PUSKESMAS Kelurahan Grogol 3),” vol. 2, no. 1, 2023, [Online]. Available: https://journal.mediapublikasi.id/index.php/oktal
R. Ariyanto, D. Puspitasari, Y. Alfani, J. T. Informasi, N. Malang, and A. A. Id, “PENERAPAN ENTROPY BASED DISCRETIZATION PADA METODE NAIVE BAYES DALAM KLASIFIKASI PENYAKIT DIABETES MELLITUS,” 2020.
E. Fathoni Alamsyah and and Niki Ratama, “APLIKASIS SISTEM PAKAR DIAGNOSA PENYAKIT BALITA BERBASIS WEB MENGGUNAKAN METODE NAIVE BAYES (STUDI KASUS: PUSKESMAS SETU),” JORAPI : Journal of Research and Publication Innovation, vol. 1, no. 2, 2023.
P. Septiani, I. Pratiwi, M. Ghofar Rohman, and M. Sholihin, “Sistem Pakar Penyakit Telinga Menggunakan Metode Naïve Bayes,” 2023.
F. Karim, G. W. Nurcahyo, and S. Sumijan, “Sistem Pakar dalam Mengidentifikasi Gejala Stroke Menggunakan Metode Naive Bayes,” Jurnal Sistim Informasi dan Teknologi, pp. 221–226, Aug. 2021, doi: 10.37034/jsisfotek.v3i4.69.
A. Natuzzuhriyyah, N. Nafisah, and R. Mayasari, “Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Secara Daring Menggunakan Algoritma Naïve Bayes,” 2021.
M. Ruza, I. S. Wijaya, and E. Suratno, “Sistem Pendukung Keputusan untuk Menentukan Karyawan Terbaik dengan Metode TOPSIS pada PT. Sumbertama Nusa Pertiwi,” Jurnal Manajemen Informatika, vol. 13, no. 2, pp. 121–134, Sep. 2023, doi: 10.34010/jamika.v13i2.9901.
D. Pramaishella and M. Maryam, “Aplikasi Manajemen Kinerja Pegawai Dengan Metode Sosiometri pada PT. Siba Prima Utama Feed Mill,” Jurnal Manajemen Informatika, vol. 13, no. 2, pp. 94–107, Oct. 2023, doi: 10.34010/jamika.v13i2.9557.
T. Firdaus and F. Yanti, “IMPLEMENTASI METODE NAÏVE BAYES PADA SISTEM PAKAR DIAGNOSA PENYAKIT GIGI BERBASIS WEB,” Dinamika Informatika, vol. 14, no. 2, 2022.
S. Syaputra et al., “Sistem Pakar Diagnosa Dampak Penggunaan Eyelash Extension Menggunakan Metode Naïve Bayes Sistem Pakar Diagnosa Dampak Penggunaan Eyelash Extension Menggunakan Metode Naïve Bayes,” MEANS (Media Informasi Analisa dan Sistem), 2023, [Online]. Available: http://ejournal.ust.ac.id/index.php/Jurnal_Means/
F. Ramadhana, Winarsih, and Fauziah, “APLIKASI SISTEM PAKAR UNTUK MENDIAGNOSA PENYAKIT ISPA MENGGUNAKAN METODE NAIVE BAYES BERBASIS WEBSITE,” 2020.
M. Ridho Handoko, “SISTEM PAKAR DIAGNOSA PENYAKIT SELAMA KEHAMILAN MENGGUNAKAN METODE NAIVE BAYES BERBASIS WEB,” Jurnal Teknologi dan Sistem Informasi, vol. 2, no. 1, pp. 50–58, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
N. Kadek, W. Patrianingsih, I. Kadek, and A. Sugianta, “Penerapan Naïve Bayes pada Potensi Akademik Siswa SD Negeri 5 Singakerta,” MEI, 2023.
Y. Yuliyana and A. S. R. M. Sinaga, “Sistem Pakar Diagnosa Penyakit Gigi Menggunakan Metode Naive Bayes,” Fountain of Informatics Journal, vol. 4, no. 1, p. 19, May 2019, doi: 10.21111/fij.v4i1.3019.
F. A. Nugroho, A. F. Solikin, M. D. Anggraini, and K. Kusrini, “Sistem Pakar Diagnosa Virus Corona Dengan Metode Naïve Bayes,” Jurnal Teknologi Informasi dan Komunikasi, vol. 9, no. 1, p. 81, Apr. 2021, doi: 10.30646/tikomsin.v9i1.553.
Supiyandi, A. Hussein, I. Gunawan, and W. L. Rahman Harjo, Analisis Klasifikasi Broken Home pada Anak Menggunakan Metode Naïve Bayes Classifier, vol. 8. Hogarth Press, 2023.
I. N. Fitriani and O. S. Purwanti, “Lama Sakit Diabetes Berhubungan dengan Fungsi Kognitif pada Pasien Diabetes Mellitus,” Jurnal Keperawatan Silampari, vol. 6, no. 2, pp. 1236–1243, Feb. 2023, doi: 10.31539/jks.v6i2.5488.
K. Nurwijayanti, “KLASIFIKASI DIAGNOSA PENYAKIT DIABETES DENGAN METODE NAÏVE BAYES BERBASIS WEB,” Jurnal Kecerdasan Buatan dan Teknologi Informasi, vol. 2, no. 3, pp. 115–121, 2023.
