Prediksi Kelulusan Tepat Waktu Siswa SMK Teknik Komputer Menggunakan Algoritma Random Forest

  • Arina Fatunnisa Universitas Amikom Purwokerto
  • Hendra Marcos
Keywords: prediksi kelulusan, SMK Teknik Komputer MBM Rawalo, Algoritma Random Forest, Dataset kelulusan, Pembagian data latih dan uji

Abstract

School performance can be measured through student completion rates, which is a key indicator. Low graduation rates indicate problems in the education and learning system, which require timely intervention to prevent students from not completing their education. Therefore, predicting graduation rates is crucial for schools in order to determine students who are likely to not complete their education, so as to provide early assistance to improve their academic performance. This research is urgent because by understanding and predicting student completion, schools can allocate resources more effectively to support at-risk students, with the ultimate goal of improving graduation rates and overall school performance. This research uses random forest algorithm with graduation dataset. The distribution of training and test data selection uses stratified random sampling method to ensure a balanced representation of each class generated. The Random Forest model was successfully obtained through training and model evaluation using test data, showing an accuracy of 1.0 or equivalent to 100%. The use of the random forest algorithm on student graduation datasets can be an effective approach in supporting timely graduation prediction due to its high accuracy and the model's ability to recognize both graduating and non-passing students.

References

K. B. Pso, I. Irawan, M. R. Qisthiano, M. Syahril, and P. M. Jakak, “Optimasi Prediksi Kelulusan Tepat Waktu : Studi Perbandingan Algoritma Random Forest dan Algoritma,” vol. 4, no. 4, pp. 26–36, 2023.

G. A. Sandag, “Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest,” CogITo Smart Journal, vol. 6, no. 2, pp. 167–178, 2020, doi: 10.31154/cogito.v6i2.270.167-178.

Yoga Religia, Agung Nugroho, and Wahyu Hadikristanto, “Klasifikasi Analisis Perbandingan Algoritma Optimasi pada Random Forest untuk Klasifikasi Data Bank Marketing,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 187–192, 2021, doi: 10.29207/resti.v5i1.2813.

N. L. Hanun, A. U. Zailani, P. Studi, T. Informatika, and U. Pamulang, “Journal of technology information,” vol. 6, no. 1, pp. 7–14, 2020.

J. Khatib et al., “Indonesian Journal of Computer Science,” vol. 11, no. 1, pp. 1015–1022, 2022.

N. B. Putri and A. W. Wijayanto, “Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi Website Phishing,” Komputika : Jurnal Sistem Komputer, vol. 11, no. 1, pp. 59–66, 2022, doi: 10.34010/komputika.v11i1.4350.

N. W. S. Saraswati and N. M. L. Martarini, “Extract Transform Loading Data Absensi Stmik Stikom Indonesia Menggunakan Pentaho,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 19, no. 2, pp. 273–281, 2020, doi: 10.30812/matrik.v19i2.564.

F. Fallah, “Hierarchical Quadratic Random Forest Classifier,” 2023, [Online]. Available: http://arxiv.org/abs/2306.01893

Oon Wira Yuda, Darmawan Tuti, Lim Sheih Yee, and Susanti, “Penerapan Penerapan Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Random Forest,” SATIN - Sains dan Teknologi Informasi, vol. 8, no. 2, pp. 122–131, 2022, doi: 10.33372/stn.v8i2.885.

J. Zeniarja, A. Salam, and F. A. Ma’ruf, “Seleksi Fitur dan Perbandingan Algoritma Klasifikasi untuk Prediksi Kelulusan Mahasiswa,” Jurnal Rekayasa Elektrika, vol. 18, no. 2, pp. 102–108, 2022, doi: 10.17529/jre.v18i2.24047.

O. Baines, A. Chung, and R. Raval, “Random forest classification algorithm,” Mathematics Research Journal, no. April, p. 500, 2020, [Online]. Available: http://orange3.readthedocs.io/en/3.4.0/widgets/classify/randomforest.html

A. Darmawan, I. Yudhisari, A. Anwari, and M. Makruf, “Pola Prediksi Kelulusan Siswa Madrasah Aliyah Swasta dengan Support Vector Machine dan Random Forest,” Jurnal Minfo Polgan, vol. 12, no. 1, pp. 387–400, 2023, doi: 10.33395/jmp.v12i1.12388.

M. Syukron, R. Santoso, and T. Widiharih, “Perbandingan Metode Smote Random Forest Dan Smote Xgboost Untuk Klasifikasi Tingkat Penyakit Hepatitis C Pada Imbalance Class Data,” Jurnal Gaussian, vol. 9, no. 3, pp. 227–236, 2020, doi: 10.14710/j.gauss.v9i3.28915.

G. S. Suwardika and I. K. P. Suniantara, “Analisis Random Forest Pada Klasifikasi Cart Ketidaktepatan Waktu Kelulusan Mahasiswa Universitas Terbuka,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 13, no. 3, pp. 177–184, 2019, doi: 10.30598/barekengvol13iss3pp177-184ar910.

T. A. Cardona, E. A. Cudney, J. Snyder, and R. W. Hoerl, “Predicting student degree completion using random forest,” ASEE Annual Conference and Exposition, Conference Proceedings, vol. 2020-June, no. April, 2020, doi: 10.18260/1-2--35074.

J. Yang, S. Devore, D. Hewagallage, P. Miller, Q. X. Ryan, and J. Stewart, “Using machine learning to identify the most at-risk students in physics classes,” Phys Rev Phys Educ Res, vol. 16, no. 2, p. 20130, 2020, doi: 10.1103/PhysRevPhysEducRes.16.020130.

van S. Plaosan, “Algoritma Random Forest,” Http://Learningbox.Coffeecup.Com/05_2_Randomforest.Html, vol. 18, no. 1, pp. 10–14, 2019.

M. Nachouki and M. A. Naaj, “Predicting Student Performance to Improve Academic Advising Using the Random Forest Algorithm,” International Journal of Distance Education Technologies, vol. 20, no. 1, pp. 1–17, 2022, doi: 10.4018/IJDET.296702.

R. Rismayati, I. Ismarmiaty, and S. Hidayat, “Ensemble Implementation for Predicting Student Graduation with Classification Algorithm,” International Journal of Engineering and Computer Science Applications (IJECSA), vol. 1, no. 1, pp. 35–42, 2022, doi: 10.30812/ijecsa.v1i1.1805.

M. Nachouki and M. A. Naaj, “Predicting Student Performance to Improve Academic Advising Using the Random Forest Algorithm,” International Journal of Distance Education Technologies, vol. 20, no. 1, pp. 1–17, 2022, doi: 10.4018/IJDET.296702.

M. A. Yulianto, “Implementasi FIS Sugeno pada Algoritma C4. 5 Berbasis Particle Swarm Optimization (PSO) untuk Prediksi Prestasi Siswam,” JOAIIA: Journal of Artificial Intelligence and Innovative Applications, vol. 1, no. 1, pp. 12–22, 2020, [Online]. Available: http://www.openjournal.unpam.ac.id/index.php/JOAIIA/article/view/4272

Sudriyanto, R. Rizaldi, and M. Ainun Rofiq Hariri, “Implementasi Algoritme Decision Tree (C4.5) dengan Optimize Weights (PSO) untuk Memprediksi Kelulusan Mahasiswa Tepat Waktu,” Jurnal Informatika Universitas Pamulang, vol. 6, no. 2, pp. 252–257, 2021, [Online]. Available: http://openjournal.unpam.ac.id/index.php/informatika252

Published
2024-04-05
How to Cite
[1]
A. Fatunnisa and H. Marcos, “Prediksi Kelulusan Tepat Waktu Siswa SMK Teknik Komputer Menggunakan Algoritma Random Forest”, JAMIKA, vol. 14, no. 1, pp. 101-111, Apr. 2024.