Deep Learning Security Schemes in IIoT: A Review
Keywords:
Industrial Internet of Things (IIoT), cybersecurity, intrusion detection system, deep learning (DL)Abstract
The Industrial Internet of Things (IIoT) is a fast-growing technology that might digitize and connect numerous industries for substantial economic prospects and global GDP growth. By the fourth industrial revolution, Industrial Internet of Things (IIoT) platforms create massive, dynamic, and inharmonious data from interconnected devices and sensors. Security and data analysis are complicated by such large diverse data. As IIoT increases, cyberattacks become more diversified and complicated, making anomaly detection algorithms less successful. IIoT is utilized in manufacturing, logistics, transportation, oil and gas, mining, metallurgy, energy utilities, and aviation. IIoT offers significant potential for industrial application development, however cyberattacks and higher security requirements are possible. The enormous volume of data produced by IoT devices demands advanced data analysis and processing technologies like deep learning. Smart assembly, smart manufacturing, efficient networking, and accident detection and prevention are possible with DL algorithms in the Industrial Internet of Things (IIoT). These many applications inspired this article on DL's IIoT potential.
References
[1] Yazdinejad, A., Dehghantanha, A., Parizi, R. M., Hammoudeh, M., Karimipour, H., & Srivastava, G. (2022). Block hunter: Federated learning for cyber threat hunting in blockchain-based iiot networks. IEEE Transactions on Industrial Informatics, 18(11), 8356-8366.
[2] Abdel-Basset, M., Chang, V., Hawash, H., Chakrabortty, R. K., & Ryan, M. (2020). Deep-IFS: Intrusion detection approach for industrial internet of things traffic in fog environment. IEEE Transactions on Industrial Informatics, 17(11), 7704-7715.
[3] Al-Abassi, A., Karimipour, H., Dehghantanha, A., & Parizi, R. M. (2020). An ensemble deep learning-based cyber-attack detection in industrial control system. Ieee Access, 8, 83965-83973.
[4] Yazdinejad, A., Parizi, R. M., Bohlooli, A., Dehghantanha, A., & Choo, K. K. R. (2020). A high-performance framework for a network programmable packet processor using P4 and FPGA. Journal of Network and Computer Applications, 156, 102564.
[5] Zhang, F., Kodituwakku, H. A. D. E., Hines, J. W., & Coble, J. (2019). Multilayer data-driven cyber-attack detection system for industrial control systems based on network, system, and process data. IEEE Transactions on Industrial Informatics, 15(7), 4362-4369.
[6] Alert, D. 2016. Cyber-attack against ukrainian critical infrastructure. Cybersecurity Infrastruct. Secur. Agency, Washington, DC, USA, Tech. Rep. ICS Alert (IR-ALERT-H-16-056-01).
[7] Hobbs, A. (2021). The colonial pipeline hack: Exposing vulnerabilities in us cybersecurity. SAGE Publications: SAGE Business Cases Originals.
[8] Yazdinejad, A., Parizi, R. M., Srivastava, G., Dehghantanha, A., & Choo, K. K. R. (2019, December). Energy efficient decentralized authentication in internet of underwater things using blockchain. In 2019 IEEE Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE.
[9] HaddadPajouh, H., Dehghantanha, A., Parizi, R. M., Aledhari, M., & Karimipour, H. (2021). A survey on internet of things security: Requirements, challenges, and solutions. Internet of Things, 14, 100129.
[10] Wu, J., Yao, L., Liu, B., Ding, Z., & Zhang, L. (2020). Combining OC-SVMs with LSTM for detecting anomalies in telemetry data with irregular intervals. IEEE Access, 8, 106648-106659.
[11] Ingre, B., Yadav, A., & Soni, A. K. (2018). Decision tree based intrusion detection system for NSL-KDD dataset. In Information and Communication Technology for Intelligent Systems (ICTIS 2017)-Volume 2 2 (pp. 207-218). Springer International Publishing.
[12] Yazdinejad, A., Parizi, R. M., Dehghantanha, A., Karimipour, H., Srivastava, G., & Aledhari, M. (2020). Enabling drones in the internet of things with decentralized blockchain-based security. IEEE Internet of Things Journal, 8(8), 6406-6415.
[13] Wu, D., Jiang, Z., Xie, X., Wei, X., Yu, W., & Li, R. 2019. LSTM learning with Bayesian and Gaussian processing for anomaly detection in industrial IoT. IEEE Transactions on Industrial Informatics, 16(8), 5244-5253.
[14] Yazdinejad, A., Srivastava, G., Parizi, R. M., Dehghantanha, A., Choo, K. K. R., & Aledhari, M. 2020. Decentralized authentication of distributed patients in hospital networks using blockchain. IEEE journal of biomedical and health informatics, 24(8), 2146-2156.
[15] Bayrakdar, M. E. 2020. Cooperative communication based access technique for sensor networks. International Journal of Electronics, 107(2), 212-225.
[16] Panigrahi, R., Borah, S., Bhoi, A. K., Ijaz, M. F., Pramanik, M., Jhaveri, R. H., & Chowdhary, C. L. 2021. Performance assessment of supervised classifiers for designing intrusion detection systems: a comprehensive review and recommendations for future research. Mathematics, 9(6), 690.
[17] Yazdinejad, A., Parizi, R. M., Dehghantanha, A., Zhang, Q., & Choo, K. K. R. 2020. An energy-efficient SDN controller architecture for IoT networks with blockchain-based security. IEEE Transactions on Services Computing, 13(4), 625-638.
[18] Liu, Y., Garg, S., Nie, J., Zhang, Y., Xiong, Z., Kang, J., & Hossain, M. S. 2020. Deep anomaly detection for time-series data in industrial IoT: A communication-efficient on-device federated learning approach. IEEE Internet of Things Journal, 8(8), 6348-6358.
[19] Bayrakdar, M. E. 2020. Exploiting cognitive wireless nodes for priority‐based data communication in terrestrial sensor networks. ETRI Journal, 42(1), 36-45.
[20] Ijaz, M. F., Alfian, G., Syafrudin, M., & Rhee, J. 2018. Hybrid prediction model for type 2 diabetes and hypertension using DBSCAN-based outlier detection, synthetic minority over sampling technique (SMOTE), and random forest. Applied sciences, 8(8), 1325.
[21] Yazdinejadna, A., Parizi, R. M., Dehghantanha, A., & Khan, M. S. 2021. A kangaroo-based intrusion detection system on software-defined networks. Computer Networks, 184, 107688.
[22] Bayrakdar, M. E. 2020. Employing sensor network based opportunistic spectrum utilization for agricultural monitoring. Sustainable Computing: Informatics and Systems, 27, 100404.
[23] Saharkhizan, M., Azmoodeh, A., Dehghantanha, A., Choo, K. K. R., & Parizi, R. M. 2020. An ensemble of deep recurrent neural networks for detecting IoT cyber attacks using network traffic. IEEE Internet of Things Journal, 7(9), 8852-8859.
[24] Abdel-Basset, M., Hawash, H., & Sallam, K. 2021. Federated threat-hunting approach for microservice-based industrial cyber-physical system. IEEE Transactions on Industrial Informatics, 18(3), 1905-1917.
[25] Yazdinejad, A., Parizi, R. M., Dehghantanha, A., & Karimipour, H. 2021. Federated learning for drone authentication. Ad Hoc Networks, 120, 102574.
[26] Gao, P., Shao, F., Liu, X., Xiao, X., Qin, Z., Xu, F., ... & Song, D. 2021. Enabling efficient cyber threat hunting with cyber threat intelligence. In 2021 IEEE 37th International Conference on Data Engineering (ICDE) (pp. 193-204). IEEE.
[27] Liang, F., Yu, W., Liu, X., Griffith, D., & Golmie, N. 2020. Toward edge-based deep learning in industrial Internet of Things. IEEE Internet of Things Journal, 7(5), 4329-4341.
[28] Khalil, R. A., Saeed, N., Masood, M., Fard, Y. M., Alouini, M. S., & Al-Naffouri, T. Y. 2021. Deep learning in the industrial internet of things: Potentials, challenges, and emerging applications. IEEE Internet of Things Journal, 8(14), 11016-11040.
[29] Zhu, S., Ota, K., & Dong, M. 2021. Green AI for IIoT: Energy efficient intelligent edge computing for industrial internet of things. IEEE Transactions on Green Communications and Networking, 6(1), 79-88.
[30] Ullah, F., Naeem, H., Jabbar, S., Khalid, S., Latif, M. A., Al-Turjman, F., & Mostarda, L. 2019. Cyber security threats detection in internet of things using deep learning approach. IEEE access, 7, 124379-124389.
[31] Zhang, Q., Yang, L. T., Chen, Z., Li, P., & Bu, F. 2018. An adaptive dropout deep computation model for industrial IoT big data learning with crowdsourcing to cloud computing. IEEE transactions on industrial informatics, 15(4), 2330-2337.
[32] Binbusayyis, A., & Vaiyapuri, T. 2019. Identifying and benchmarking key features for cyber intrusion detection: An ensemble approach. Ieee Access, 7, 106495-106513.
[33] Binbusayyis, A., & Vaiyapuri, T. 2021. Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM. Applied Intelligence, 51(10), 7094-7108.
[34] Christiansen, P., Nielsen, L. N., Steen, K. A., Jørgensen, R. N., & Karstoft, H. 2016. DeepAnomaly: Combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field. Sensors, 16(11), 1904.
[35] Kang, M. J., & Kang, J. W. 2016. Intrusion detection system using deep neural network for in-vehicle network security. PloS one, 11(6), e0155781.
[36] Khalil, R. A., Saeed, N., Masood, M., Fard, Y. M., Alouini, M. S., & Al-Naffouri, T. Y. 2021. Deep learning in the industrial internet of things: Potentials, challenges, and emerging applications. IEEE Internet of Things Journal, 8(14), 11016-11040.
[37] Cruz, T., Rosa, L., Proença, J., Maglaras, L., Aubigny, M., Lev, L., ... & Simões, P. 2016. A cybersecurity detection framework for supervisory control and data acquisition systems. IEEE Transactions on Industrial Informatics, 12(6), 2236-2246.
[38] Grill, M., Pevný, T., & Rehak, M. 2017. Reducing false positives of network anomaly detection by local adaptive multivariate smoothing. Journal of Computer and System Sciences, 83(1), 43-57.
[39] Primartha, R., & Tama, B. A. 2017. Anomaly detection using random forest: A performance revisited. In 2017 International conference on data and software engineering (ICoDSE) (pp. 1-6). IEEE.
[40] Vijayanand, R., Devaraj, D., & Kannapiran, B. 2018. Intrusion detection system for wireless mesh network using multiple support vector machine classifiers with genetic-algorithm-based feature selection. Computers & Security, 77, 304-314.
[41] Dahiya, P., & Srivastava, D. K. 2018. Network intrusion detection in big dataset using spark. Procedia computer science, 132, 253-262.
[42] Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G. G., & Chen, J. 2018. Detection of malicious code variants based on deep learning. IEEE Transactions on Industrial Informatics, 14(7), 3187-3196.
[43] Hurrah, N. N., Parah, S. A., Sheikh, J. A., Al-Turjman, F., & Muhammad, K. 2019. Secure data transmission framework for confidentiality in IoTs. Ad Hoc Networks, 95, 101989.
[44] Deebak, B. D., & Al-Turjman, F. 2020. A hybrid secure routing and monitoring mechanism in IoT-based wireless sensor networks. Ad Hoc Networks, 97, 102022.
[45] Dragos, A. 2017. Trisis malware: Analysis of safety system targeted malware. Dragos version 1. 20171213.
[46] Robertson, J., & Riley, M. 2014. Mysterious’ 08 turkey pipeline blast opened new cyberwar era. Bloomberg Business.
[47] Lee, R. M., Assante, M. J., & Conway, T. the Baku-Tbilisi-Ceyhan (BTC) pipeline Cyber Attack.
[48] Lee, R. M., Assante, M. J., & Conway, T. 2016. Analysis of the recent reports of attacks on US infrastructure by Iranian Actors. SANS Industrial Control Systems 4, 9.
[49] ITS Committee. 2013. IEEE standard for wireless access in vehicular environments-security services for applications and management messages. IEEE Vehicular Technology Society, 1609(2)..
[50] McCarthy, J., Faatz, D., Urlaub, N., Wiltberger, J., & Yimer, T. 2021. Securing the Industrial Internet of Things: Cybersecurity for Distributed Energy Resources (No. NIST Special Publication (SP) 1800-32 (Withdrawn)). National Institute of Standards and Technology.
[51] Thamilarasu, G., & Chawla, S. 2019. Towards deep-learning-driven intrusion detection for the internet of things. Sensors, 19(9), 1977.
[52] Wang, W., Sheng, Y., Wang, J., Zeng, X., Ye, X., Huang, Y., & Zhu, M. 2017. HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE access, 6, 1792-1806.
[53] Chawla, A., Lee, B., Fallon, S., & Jacob, P. 2019. Host based intrusion detection system with combined CNN/RNN model. In ECML PKDD 2018 Workshops: Nemesis 2018, UrbReas 2018, SoGood 2018, IWAISe 2018, and Green Data Mining 2018, Dublin, Ireland, September 10-14, 2018, Proceedings 18 (pp. 149-158). Springer International Publishing.
[54] Wang, C., Wang, B., Liu, H., & Qu, H. 2020. Anomaly detection for industrial control system based on autoencoder neural network. Wireless Communications and Mobile Computing, 2020(1), 8897926.
[55] Luo, T., & Nagarajan, S. G. 2018. Distributed anomaly detection using autoencoder neural networks in WSN for IoT. In 2018 ieee international conference on communications (icc) (pp. 1-6). IEEE.
[56] Huang, J., Kong, L., Chen, G., Wu, M. Y., Liu, X., & Zeng, P. 2019. Towards secure industrial IoT: Blockchain system with credit-based consensus mechanism. IEEE Transactions on Industrial Informatics, 15(6), 3680-3689.
[57] Huda, S., Miah, S., Yearwood, J., Alyahya, S., Al-Dossari, H., & Doss, R. 2018. A malicious threat detection model for cloud assisted internet of things (CoT) based industrial control system (ICS) networks using deep belief network. Journal of Parallel and Distributed Computing, 120, 23-31.
[58] Chen, N., Qiu, T., Mu, C., Han, M., & Zhou, P. 2020. Deep actor–critic learning-based robustness enhancement of Internet of Things. IEEE Internet of Things Journal, 7(7), 6191-6200.
[59] Liu, M., Yu, F. R., Teng, Y., Leung, V. C., & Song, M. 2019. Performance optimization for blockchain-enabled industrial Internet of Things (IIoT) systems: A deep reinforcement learning approach. IEEE Transactions on Industrial Informatics, 15(6), 3559-3570.
[60] Kim, J., Ban, Y., Ko, E., Cho, H., & Yi, J. H. 2022. MAPAS: a practical deep learning-based android malware detection system. International Journal of Information Security, 21(4), 725-738.
[61] Panchal, A. C., Khadse, V. M., & Mahalle, P. N. 2018. Security issues in IIoT: A comprehensive survey of attacks on IIoT and its countermeasures. In 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN) (pp. 124-130). IEEE.
[62] Yu, X., & Guo, H. 2019. A survey on IIoT security. In 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS) (pp. 1-5). IEEE.
[63] Mohanta, B. K., Jena, D., Satapathy, U., & Patnaik, S. 2020. Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology. Internet of things, 11, 100227.
[64] Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. 2019. A survey on IoT security: application areas, security threats, and solution architectures. IEEe Access, 7, 82721-82743.
[65] Bajic, E. 2018. Localisation et identification de ressources industrielles par l'Internet des objets. GeSI-Revue des Départements de Génie Electrique et Informatique Industrielle, (92), 19-27.
[66] Cheng, C. F., Chen, Y. C., & Lin, J. C. W. 2020. A carrier-based sensor deployment algorithm for perception layer in the IoT architecture. IEEE Sensors Journal, 20(17), 10295-10305.
[67] Kaur, H., & Kumar, R. 2021. A survey on Internet of Things (IoT): Layer-specific, domain-specific and industry-defined architectures. In Advances in Computational Intelligence and Communication Technology: Proceedings of CICT 2019 (pp. 265-275). Springer Singapore.
[68] HaddadPajouh, H., Khayami, R., Dehghantanha, A., Choo, K. K. R., & Parizi, R. M. 2020. AI4SAFE-IoT: An AI-powered secure architecture for edge layer of Internet of things. Neural Computing and Applications, 32(20), 16119-16133.
[69] Abdullah, A., Kaur, H., & Biswas, R. 2020. Universal layers of IoT architecture and its security analysis. In New Paradigm in Decision Science and Management: Proceedings of ICDSM 2018 (pp. 293-302). Springer Singapore.
[70] Mrabet, H., Belguith, S., Alhomoud, A., & Jemai, A. 2020. A survey of IoT security based on a layered architecture of sensing and data analysis. Sensors, 20(13), 3625.
[71] Alidoosti, M., Nowroozi, A., & Nickabadi, A. 2020. Evaluating the web‐application resiliency to business‐layer DoS attacks. ETRI Journal, 42(3), 433-445.
[72] Patnaik, R., Padhy, N., & Srujan Raju, K. 2021. A systematic survey on IoT security issues, vulnerability and open challenges. In Intelligent System Design: Proceedings of Intelligent System Design: INDIA 2019 (pp. 723-730). Springer Singapore.
[73] Sodhro, A. H., Pirbhulal, S., & De Albuquerque, V. H. C. 2019. Artificial intelligence-driven mechanism for edge computing-based industrial applications. IEEE Transactions on Industrial Informatics, 15(7), 4235-4243.
[74] Li, F., Shi, Y., Shinde, A., Ye, J., & Song, W. 2019. Enhanced cyber-physical security in internet of things through energy auditing. IEEE Internet of Things Journal, 6(3), 5224-5231.
[75] Benkhelifa, E., Welsh, T., & Hamouda, W. 2018. A critical review of practices and challenges in intrusion detection systems for IoT: Toward universal and resilient systems. IEEE communications surveys & tutorials, 20(4), 3496-3509.
[76] Garg, S., Kaur, K., Kumar, N., Kaddoum, G., Zomaya, A. Y., & Ranjan, R. 2019. A hybrid deep learning-based model for anomaly detection in cloud datacenter networks. IEEE Transactions on Network and Service Management, 16(3), 924-935.
[77] Qiu, M., Dai, H. N., Sangaiah, A. K., Liang, K., & Zheng, X. 2019. Guest editorial: Special section on emerging privacy and security issues brought by artificial intelligence in industrial informatics. IEEE Transactions on Industrial Informatics, 16(3), 2029-2030.
[78] Tschofenig, H., & Baccelli, E. 2019. Cyberphysical security for the masses: A survey of the internet protocol suite for internet of things security. IEEE Security & Privacy, 17(5), 47-57.
[79] Zhang, Y., Krishnan, V. V., Pi, J., Kaur, K., Srivastava, A., Hahn, A., & Suresh, S. 2019. Cyber physical security analytics for transactive energy systems. IEEE Transactions on Smart Grid, 11(2), 931-941.
[80] Zhou, Z., Chen, K., & Zhang, J. 2015. Efficient 3-D scene prefetching from learning user access patterns. IEEE Transactions on Multimedia, 17(7), 1081-1095.
[81] Liu, C. H., Lin, Q., & Wen, S. 2018. Blockchain-enabled data collection and sharing for industrial IoT with deep reinforcement learning. IEEE Transactions on Industrial Informatics, 15(6), 3516-3526.
[82] Hassija, V., Chamola, V., Gupta, V., Jain, S., & Guizani, N. 2020. A survey on supply chain security: Application areas, security threats, and solution architectures. IEEE Internet of Things Journal, 8(8), 6222-6246.
[83] Alasmary, H., Khormali, A., Anwar, A., Park, J., Choi, J., Abusnaina, A., ... & Mohaisen, A. 2019. Analyzing and detecting emerging Internet of Things malware: A graph-based approach. IEEE Internet of Things Journal, 6(5), 8977-8988.
[84] Celik, Z. B., McDaniel, P., Tan, G., Babun, L., & Uluagac, A. S. 2019. Verifying internet of things safety and security in physical spaces. IEEE Security & Privacy, 17(5), 30-37.
[85] Rabieinejad, E., Yazdinejad, A., Dehghantanha, A., Parizi, R. M., & Srivastava, G. 2021. Secure ai and blockchain-enabled framework in smart vehicular networks. In 2021 IEEE Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE.
[86] Yazdinejad, A., Rabieinejad, E., Dehghantanha, A., Parizi, R. M., & Srivastava, G. 2021. A machine learning-based sdn controller framework for drone management. In 2021 IEEE Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE.
[87] Hasan, M., Islam, M. M., Zarif, M. I. I., & Hashem, M. M. A. 2019. Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet of Things, 7, 100059.
[88] Jabbar, M. A., & Aluvalu, R. 2017. RFAODE: A novel ensemble intrusion detection system. Procedia computer science, 115, 226-234.
[89] Muna, A. H., Moustafa, N., & Sitnikova, E. 2018. Identification of malicious activities in industrial internet of things based on deep learning models. Journal of information security and applications, 41, 1-11.
[90] Behera, S., Choubey, A., Kanani, C. S., Patel, Y. S., Misra, R., & Sillitti, A. 2019. Ensemble trees learning based improved predictive maintenance using IIoT for turbofan engines. In Proceedings of the 34th ACM/SIGAPP symposium on applied computing (pp. 842-850).
[91] Alhalabi, B., Gaber, M., & Basurra, S. 2020. Prune2edge: A multi-phase pruning pipelines to deep ensemble learning in iiot. arXiv preprint arXiv:2004.04710.
[92] Gu, T., Abhishek, A., Fu, H., Zhang, H., Basu, D., & Mohapatra, P. 2020. Towards learning-automation IoT attack detection through reinforcement learning. In 2020 IEEE 21st International Symposium on" A World of Wireless, Mobile and Multimedia Networks"(WoWMoM) (pp. 88-97). IEEE.
[93] Kurniawan, A. A., Santoso, H. A., Soeleman, M. A., & Fanani, A. Z. 2019. Intrusion detection system as audit in IoT infrastructure using ensemble learning and SMOTE method. In 2019 5th International Conference on Science in Information Technology (ICSITech) (pp. 205-210). IEEE.
[94] Abdel-Basset, M., Hawash, H., & Sallam, K. 2021. Federated threat-hunting approach for microservice-based industrial cyber-physical system. IEEE Transactions on Industrial Informatics, 18(3), 1905-1917.
[95] Liu, Y., Garg, S., Nie, J., Zhang, Y., Xiong, Z., Kang, J., & Hossain, M. S. 2020. Deep anomaly detection for time-series data in industrial IoT: A communication-efficient on-device federated learning approach. IEEE Internet of Things Journal, 8(8), 6348-6358.
[96] Chen, B., & Wan, J. 2019. Emerging trends of ml-based intelligent services for industrial internet of things (iiot). 2019 Computing, Communications and IoT Applications (ComComAp), 135-139.
[97] Ozanich, E., Gerstoft, P., & Niu, H. 2020. A feedforward neural network for direction-of-arrival estimation. J. Acoust. Soc. Am., 147(3), 2035-2048.
[98] Orimoloye, L. O., Sung, M. C., Ma, T., & Johnson, J. E. 2020. Comparing the effectiveness of deep feedforward neural networks and shallow architectures for predicting stock price indices. Expert Systems with Applications, 139, 112828.
[99] Zhang, N., & Sun, S. 2021. Multiview graph restricted Boltzmann machines. IEEE Transactions on Cybernetics, 52(11), 12414-12428.
[100] Gu, L., Zhou, F., & Yang, L. 2020. Towards the representational power of restricted Boltzmann machines. Neurocomputing, 415, 358-367.
[101] Deshwal, D., & Sangwan, P. 2020. A comprehensive study of deep neural networks for unsupervised deep learning. In Artificial intelligence for sustainable development: Theory, practice and future applications (pp. 101-126). Cham: Springer International Publishing.
[102] Chen, C., Ma, Y., & Ren, G. 2020. Hyperspectral classification using deep belief networks based on conjugate gradient update and pixel-centric spectral block features. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4060-4069.
[103] Hong, C., Zeng, Z. Y., Fu, Y. Z., & Guo, M. F. 2020. Deep‐belief‐Networks based fault classification in power distribution networks. IEEJ Transactions on Electrical and Electronic Engineering, 15(10), 1428-1435.
[104] Chu, H., Wei, J., Wu, W., Jiang, Y., Chu, Q., & Meng, X. 2021. A classification-based deep belief networks model framework for daily streamflow forecasting. Journal of Hydrology, 595, 125967.
[105] Zhuang, X., Guo, H., Alajlan, N., Zhu, H., & Rabczuk, T. 2021. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics-A/Solids, 87, 104225.
[106] Pawar, K., & Attar, V. Z. 2020. Assessment of autoencoder architectures for data representation. Deep learning: concepts and architectures, 101-132.
[107] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
[108] Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
[109] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. 2016. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
[110] Boulila, W., Sellami, M., Driss, M., Al-Sarem, M., Safaei, M., & Ghaleb, F. A. 2021. RS-DCNN: A novel distributed convolutional-neural-networks based-approach for big remote-sensing image classification. Computers and Electronics in Agriculture, 182, 106014.
[111] Zhang, Y., Wang, Y., & Luo, G. 2020. A new optimization algorithm for non-stationary time series prediction based on recurrent neural networks. Future Generation Computer Systems, 102, 738-745.
[112] Boulila, W., Ghandorh, H., Khan, M. A., Ahmed, F., & Ahmad, J. 2021. A novel CNN-LSTM-based approach to predict urban expansion. Ecological Informatics, 64, 101325.
[113] Kousik, N., Natarajan, Y., Raja, R. A., Kallam, S., Patan, R., & Gandomi, A. H. 2021. Improved salient object detection using hybrid Convolution Recurrent Neural Network. Expert Systems with Applications, 166, 114064.
[114] Aggarwal, A., Mittal, M., & Battineni, G. 2021. Generative adversarial network: An overview of theory and applications. International Journal of Information Management Data Insights, 1(1), 100004.
[115] Yoon, J., Drumright, L. N., & Van Der Schaar, M. 2020. Anonymization through data synthesis using generative adversarial networks (ADS-GAN). IEEE journal of biomedical and health informatics, 24(8), 2378-2388.
[116] Fekri, M. N., Ghosh, A. M., & Grolinger, K. 2019. Generating energy data for machine learning with recurrent generative adversarial networks. Energies, 13(1), 130.
[117] Li, H., Ota, K., & Dong, M. 2018. Learning IoT in edge: Deep learning for the Internet of Things with edge computing. IEEE network, 32(1), 96-101.
[118] Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D., & Elovici, Y. 2018. N-baiot—network-based detection of iot botnet attacks using deep autoencoders. IEEE Pervasive Computing, 17(3), 12-22.
[119] Tang, J., Sun, D., Liu, S., & Gaudiot, J. L. 2017. Enabling deep learning on IoT devices. Computer, 50(10), 92-96.
[120] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360.
[121] Le Minh, K. H., Le, K. H., & Le-Trung, Q. 2020. Dlase: A light-weight framework supporting deep learning for edge devices. In 2020 4th International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom) (pp. 103-108). IEEE.
[122] Louis, M. S., Azad, Z., Delshadtehrani, L., Gupta, S., Warden, P., Reddi, V. J., & Joshi, A. 2019. Towards deep learning using tensorflow lite on risc-v. In Third Workshop on Computer Architecture Research with RISC-V (CARRV) (Vol. 1, p. 6). ACM.
[123] Wang, X., Magno, M., Cavigelli, L., & Benini, L. 2020. FANN-on-MCU: An open-source toolkit for energy-efficient neural network inference at the edge of the Internet of Things. IEEE Internet of Things Journal, 7(5), 4403-4417.
[124] Aghapour, E., Pathania, A., & Ananthanarayanan, G. 2021. Integrated ARM big. Little-Mali pipeline for high-throughput CNN inference. Univ. Amsterdam, Amsterdam, The Netherlands, Tech. Rep. TCAD-2021-0385.
[125] Roopaei, M., Rad, P., & Jamshidi, M. 2017. Deep learning control for complex and large scale cloud systems. Intelligent Automation & Soft Computing, 23(3), 389-391.
[126] Robertson, C., Li, J., Ohira, R., Nguyen, Q. V. H., & Jo, J. 2019. Optimising Deep Learning Split Deployment for IoT Edge Networks. In 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT) (pp. 346-351). IEEE.
[127] Han, S., Mao, H., & Dally, W. J. 2015. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149.
[128] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., & Temam, O. 2014. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. ACM SIGARCH Computer Architecture News, 42(1), 269-284.
[129] Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., ... & Temam, O. 2014. Dadiannao: A machine-learning supercomputer. In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture (pp. 609-622). IEEE.
[130] Hussein, D. H., & Askar, S. 2023. Federated learning enabled SDN for routing emergency safety messages (ESMs) in IoV under 5G environment. IEEE Access, 11, 141723-141739.
[131] Abdulazeez, D. H., & Askar, S. K. 2024. A novel offloading mechanism leveraging fuzzy logic and deep reinforcement learning to improve IoT application performance in a three-layer architecture within the fog-cloud environment. IEEE Access.
[132] Ibrahim, M. A., & Askar, S. 2023. An intelligent scheduling strategy in fog computing system based on multi-objective deep reinforcement learning algorithm. IEEE Access, 11, 133607-133622.
[133] Abdulazeez, D. H., & Askar, S. K. 2023. Offloading mechanisms based on reinforcement learning and deep learning algorithms in the fog computing environment. Ieee Access, 11, 12555-12586.
[134] Othman, M., Ali, D., & Abdullah, N. 2024. Deep Learning Based Security Schemes for IoT Applications: A Review. The Indonesian Journal of Computer Science, 13(2).
[135] Ali, D., & Abdullah, N. 2024. Deep Learning in Medical Image Analysis Article Review. The Indonesian Journal of Computer Science, 13(2).
[136] Pallathadka, H., Askar, S., Kulshreshta, A., Sharma, M. K., Widatalla, S., & Mudae, I. S. 2024. Economic and Environmental Energy Scheduling of Smart Hybrid Micro Grid Based on Demand Response. International Journal of Integrated Engineering, 16(9), 351-365.
[137] Husain, B. H., & Askar, S. 2022. Smart resource scheduling model in fog computing. In 2022 8th International Engineering Conference on Sustainable Technology and Development (IEC) (pp. 96-101). IEEE.
[138] Zhang, L., Askar, S., Alkhayyat, A., Samavatian, M., & Samavatian, V. 2024. Machine learning-driven detection of anomalies in manufactured parts from resonance frequency signatures. Nondestructive Testing and Evaluation, 1-23.
[139] Yang, Y., Patil, N., Askar, S., & Kumar, A. 2025. Machine learning-guided study of residual stress, distortion, and peak temperature in stainless steel laser welding. Applied Physics A, 131(1), 44.
[140] Horrell, M., Reynolds, L., & McElhinney, A. 2020. Data science in heavy industry and the Internet of Things. Harvard Data Science Review, 2(2).
[141] Sezer, O. B., Dogdu, E., & Ozbayoglu, A. M. 2017. Context-aware computing, learning, and big data in internet of things: a survey. IEEE Internet of Things Journal, 5(1), 1-27.
[142] Zhang, S., Zhang, S., Wang, B., & Habetler, T. G. 2020. Deep learning algorithms for bearing fault diagnostics—A comprehensive review. IEEE access, 8, 29857-29881.
[143] Rymarczyk, T., Kłosowski, G., Kozłowski, E., & Tchórzewski, P. 2019. Comparison of selected machine learning algorithms for industrial electrical tomography. Sensors, 19(7), 1521.
[144] Wang, Y., Pan, Z., Yuan, X., Yang, C., & Gui, W. 2020. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network. ISA transactions, 96, 457-467.
[145] Coleman, C., Yeh, C., Mussmann, S., Mirzasoleiman, B., Bailis, P., Liang, P., ... & Zaharia, M. 2019. Selection via proxy: Efficient data selection for deep learning. arXiv preprint arXiv:1906.11829.
[146] Jiang, F., Fu, Y., Gupta, B. B., Liang, Y., Rho, S., Lou, F., ... & Tian, Z. 2018. Deep learning based multi-channel intelligent attack detection for data security. IEEE transactions on Sustainable Computing, 5(2), 204-212.
[147] Zhang, S., Yao, L., Sun, A., & Tay, Y. 2019. Deep learning based recommender system: A survey and new perspectives. ACM computing surveys (CSUR), 52(1), 1-38.
[148] Alvarez-Gonzalez, F., Griffo, A., Sen, B., & Wang, J. 2017. Real-time hardware-in-the-loop simulation of permanent-magnet synchronous motor drives under stator faults. IEEE Transactions on Industrial Electronics, 64(9), 6960-6969.
[149] Askar, S., Zervas, G., Hunter, D. K., & Simeonidou, D. 2010. Classified cloning for QoS provisioning in OBS networks. In 36th European Conference and Exhibition on Optical Communication (pp. 1-3). IEEE.
[150] Samann, F. E., Ameen, S. Y., & Askar, S. 2022. Fog computing in 5g mobile networks: a review. In 2022 4th International Conference on Advanced Science and Engineering (ICOASE) (pp. 142-147). IEEE.
[151] Omer, S. M., Ghafoor, K. Z., & Askar, S. K. 2024. Lightweight improved yolov5 model for cucumber leaf disease and pest detection based on deep learning. Signal, Image and Video Processing, 18(2), 1329-1342.
[152] Askar, S. 2017. SDN-based load balancing scheme for fat-tree data center networks. Al-Nahrain Journal for Engineering Sciences, 20(5), 1047-1056.
[153] Askar, S., Zervas, G., Hunter, D. K., & Simeonidou, D. 2011. A novel ingress node design for video streaming over optical burst switching networks. Optics Express, 19(26), B191-B196.
[154] Bi, Z. M., & Wang, L. 2010. Advances in 3D data acquisition and processing for industrial applications. Robotics and Computer-Integrated Manufacturing, 26(5), 403-413.
[155] Zhou, L., Wu, D., Chen, J., & Dong, Z. 2017. When computation hugs intelligence: Content-aware data processing for industrial IoT. IEEE Internet of Things Journal, 5(3), 1657-1666.
[156] Yao, S., Zhao, Y., Shao, H., Zhang, C., Zhang, A., Hu, S., ... & Abdelzaher, T. 2018. Sensegan: Enabling deep learning for internet of things with a semi-supervised framework. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2(3), 1-21.
[157] Tschuchnig, M. E., Ferner, C., & Wegenkittl, S. 2020. Sequential iot data augmentation using generative adversarial networks. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4212-4216). IEEE.
[158] Mehdiyev, N., Lahann, J., Emrich, A., Enke, D., Fettke, P., & Loos, P. 2017. Time series classification using deep learning for process planning: A case from the process industry. Procedia Computer Science, 114, 242-249.
[159] Latif, S., Driss, M., Boulila, W., Huma, Z. E., Jamal, S. S., Idrees, Z., & Ahmad, J. 2021. Deep learning for the industrial internet of things (iiot): A comprehensive survey of techniques, implementation frameworks, potential applications, and future directions. Sensors, 21(22), 7518
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.