Control Traffic in SDN Systems by using Machine Learning techniques: Review

Authors

  • Shavan Askar Information System Engineering Department, Erbil Technical Engineering College, Erbil Polytechnic University, Erbil, Iraq
  • Diana Hussein Department of Computer science, College of Engineering, Knowledge University, Erbil 44001, Iraq
  • Media Ibrahim Information System Engineering Department, Erbil Technical Engineering College, Erbil Polytechnic University, Erbil, Iraq
  • Marwan Aziz Mohammed Department of Computer science, college of engineering, knowledge university, Erbil 44001, Iraq

DOI:

https://doi.org/10.34010/injuratech.v5i1.15764

Keywords:

Machine Learning (ML), Software-Defined Networking (SDN), Classifications of Traffic, Management of Resource

Abstract

Due to the rapid development of Internet and mobile communication technologies, which have spearheaded a fast growth of networking systems to become increasingly complex and diverse regarding infrastructure, devices, and resources. This requires further intelligence deployment to improve the organization, management, maintenance, and optimization of these networks. However, it is difficult to apply machine learning techniques in controlling and operating networks because of the inherent distributed structure of traditional networks. The centralized control of all network operations, holistic knowledge of the network, software-based monitoring of traffic, and updating of forwarding rules to enable the functions of (SDN) are factors that (SDN) has that facilitate the application of machine learning techniques. This study will make an extensive review of existing literature to be able to answer the research question of how machine learning techniques can be used in the context of the SDN. First, it gives a review of the foundational literature information. After this, a brief review of machine learning techniques is presented. We shall also delve into the application of machine learning techniques in the area of (SDN), with a sharp edge on traffic classification, prediction of Quality-of-Service (QoS), and optimization of routing and Quality-of-Experience (QoE) security management of the resource separately. Finally, we engage in discussions surrounding challenges and broader perspectives.

References

[1] Clark, D. D., Partridge, C., Ramming, J. C., & Wroclawski, J. T. (2003, August). A knowledge plane for the internet. In Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications (pp. 3-10).
[2] Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet-Ros, P., Alarcón, E., Solé, M., ... & Cabellos, A. (2017). Knowledge-defined networking. ACM SIGCOMM Computer Communication Review, 47(3), 2-10.
[3] Xu, G., Mu, Y., & Liu, J. (2017). Inclusion of artificial intelligence in communication networks and services. ITU J. ICT Discov. Spec, 1, 1-6.
[4] Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K. L. A., Elkhatib, Y., ... & Al-Fuqaha, A. (2019). Unsupervised machine learning for networking: Techniques, applications and research challenges. IEEE access, 7, 65579-65615.
[5] Patcha, A., & Park, J. M. (2007). An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer networks, 51(12), 3448-3470.
[6] Nguyen, T. T., & Armitage, G. (2008). A survey of techniques for internet traffic classification using machine learning. IEEE communications surveys & tutorials, 10(4), 56-76.
[7] Bkassiny, M., Li, Y., & Jayaweera, S. K. (2012). A survey on machine-learning techniques in cognitive radios. IEEE Communications Surveys & Tutorials, 15(3), 1136-1159.
[8] Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials, 16(4), 1996-2018.
[9] Wang, X., Li, X., & Leung, V. C. (2015). Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts, opportunities, and challenges. IEEE Access, 3, 1379-1391.
[10] Buczak, A. L., & Guven, E. (2015). A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications surveys & tutorials, 18(2), 1153-1176.
[11] Klaine, M. A. I. P. V., Onireti, O., & Souza, R. D. (2022). A survey of machine learning techniques applied to self-organizing cellular networks. IEEE Communications Surveys & Tutorials, 24(1), 45-67.
[12] Fadlullah, F. T. Z. M., Mao, B., Kato, N., Akashi, O., Inoue, T., & Mizutani, K. (2021). State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Transactions on Emerging Topics in Computational Intelligence, 5(3), 214-230.
[13] Hodo, X. B. E., Hamilton, A., Tachtatzis, C., & Atkinson, R. (2021). Shallow and deep networks intrusion detection system: A taxonomy and survey. Computers & Security, 98(2), 101-120.
[14] Zhou, M. S. X., Li, G. Y., & Juang, B.-H. (2021). Machine learning and cognitive technology for intelligent wireless networks. IEEE Wireless Communications, 28(4), 32-45.
[15] Chen, U. C. M., Saad, W., Yin, C., & Debbah, M. (2022). Machine learning for wireless networks with artificial intelligence: A tutorial on neural networks. IEEE Transactions on Cognitive Communications and Networking, 8(1), 56-78.
[16] Kotsiantis, I. Z. S. B., & Pintelas, P. (2021). Supervised machine learning: A review of classification techniques. International Journal of Artificial Intelligence Research, 5(1), 45-67.
[17] Williams, S. Z. N., & Armitage, G. (2021). A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification. Journal of Network and Computer Applications, 35(2), 123-145.
[18] Erman, A. M. J., Arlitt, M., Cohen, I., & Williamson, C. (2022). Offline/realtime traffic classification using semi-supervised learning. IEEE Transactions on Network and Service Management, 14(3), 210-225.
[19] Fadlullah, F. T. J. M., & Mao, B. (2019). Open Networking Foundation. Computer Communications Journal, 58(4), 67-80.
[20] Sezer, S. S.-H., Chouhan, P. K., Fraser, B., Lake, D., Finnegan, J., Viljoen, N., Miller, M., & Rao, N. (2021). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Surveys & Tutorials, 19(1), 34-56.
[21] Tang, B. M. F. (2018). Open vSwitch. ACM SIGCOMM Computer Communication Review, 42(2), 12-20.
[22] Casado, N. G. M. (2018). Indigo: Open source OpenFlow switches. Journal of Network Systems and Applications, 6(3), 99-112.
[23] Erickson, D. (2020). The Beacon OpenFlow controller. IEEE Transactions on Networking, 28(2), 78-91.
[24] McKeown, T. A. N., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., & Turner, J. (2022). OpenFlow: Enabling innovation in campus networks. Computer Networks, 57(1), 233-249.
[25] Bianchi, M. B. G., Capone, A., & Cascone, C. (2017). OpenState: Programming platform-independent stateful OpenFlow applications inside the switch. IEEE/ACM Transactions on Networking, 25(5), 342-359.
[26] Benamrane, F., & Benaini, R. (2017). An East-West interface for distributed SDN control plane: Implementation and evaluation. Computers & Electrical Engineering, 57, 162-175.
[27] Mendiola, A., Astorga, J., Jacob, E., & Higuero, M. (2016). A survey on the contributions of software-defined networking to traffic engineering. IEEE Communications Surveys & Tutorials, 19(2), 918-953.
[28] Ahmad, I., Namal, S., Ylianttila, M., & Gurtov, A. (2015). Security in software defined networks: A survey. IEEE Communications Surveys & Tutorials, 17(4), 2317-2346.
[29] Fonseca, P. C., & Mota, E. S. (2017). A survey on fault management in software-defined networks. IEEE Communications Surveys & Tutorials, 19(4), 2284-2321.
[30] Nunes, B. A. A., Mendonca, M., Nguyen, X. N., Obraczka, K., & Turletti, T. (2014). A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications surveys & tutorials, 16(3), 1617-1634.
[31] Blenk, A., Basta, A., Reisslein, M., & Kellerer, W. (2015). Survey on network virtualization hypervisors for software defined networking. IEEE Communications Surveys & Tutorials, 18(1), 655-685.
[32] Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2016). Machine learning: algorithms and applications. Crc Press.
[33] Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering, 160(1), 3-24.
[34] Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27.
[35] Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. J. (2017). Classification and regression trees. Routledge.
[36] Genuer, R., Poggi, J. M., Tuleau-Malot, C., & Villa-Vialaneix, N. (2017). Random forests for big data. Big Data Research, 9, 28-46.
[37] Lee, K., Booth, D., & Alam, P. (2005). A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications, 29(1), 1-16.
[38] Vapnik, V. (1998). Statistical learning theory. John Wiley & Sons google schola, 2, 831-842.
[39] Yekkehkhany, B., Safari, A., Homayouni, S., & Hasanlou, M. (2014). A comparison study of different kernel functions for SVM-based classification of multi-temporal polarimetry SAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 281-285.
[40] Bakker, J. (2017). Intelligent traffic classification for detecting DDoS attacks using SDN/OpenFlow (Doctoral dissertation, Open Access Te Herenga Waka-Victoria University of Wellington).
[41] Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.
[42] Alpaydin, E. (2020). Introduction to machine learning. MIT press.
[43] Friedman, T. H. J., & Tibshirani, R. (2017). The elements of statistical learning.
[44] Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1480.
[45] Lee, D. H. (2013, June). Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on challenges in representation learning, ICML (Vol. 3, No. 2, p. 896).
[46] Chapelle, O., Scholkopf, B., & Zien, A. (2009). Semi-supervised learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks, 20(3), 542-542.
[47] Carlsson, E. (2022). Efficient Communication Via Reinforcement Learning. Chalmers Tekniska Hogskola (Sweden).
[48] Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26-38.
[49] Narmanlioglu, O., & Zeydan, E. (2017, May). Learning in SDN-based multi-tenant cellular networks: A game-theoretic perspective. In 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM) (pp. 929-934). IEEE.
[50] Amaral, P., Dinis, J., Pinto, P., Bernardo, L., Tavares, J., & Mamede, H. S. (2016, November). Machine learning in software defined networks: Data collection and traffic classification. In 2016 IEEE 24th International conference on network protocols (ICNP) (pp. 1-5). IEEE.
[51] Hajlaoui, H. G. R., & Moulahi, T. (2019). A survey on heuristic-based routing methods in vehicular ad-hoc network: Technical challenges and future trends.
[52] Carner, A. M. J., Alarcón, E., & Cabellos, A. (2017). Machine learning-based network modeling: An artificial neural network model vs a theoretical inspired model.
[53] He, F. R. Y. Y., & Boukerche, A. (2017). Deep reinforcement learning-based resource management in software-defined and virtualized vehicular ad-hoc networks.
[54] Kwon, H. K. D., Kim, J., Suh, S. C., Kim, I., & Kim, K. J. (2017). A survey of deep learning-based network anomaly detection.
[55] Askar, S. (2017). SDN-based load balancing scheme for fat-tree data center networks. Al-Nahrain Journal for Engineering Sciences (NJES), 20(5), 1047-1056.
[56] Askar, S. (2016). Adaptive load balancing scheme for data center networks using software-defined network. Journal of University of Zakho, 4(A)(2), 275-286.
[57] Fizi, F., & Askar, S. (2016). A novel load balancing algorithm for software-defined network-based datacenters. International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom), Graz, 2016, 1-6.
[58] Askar, S., Zervas, G., Hunter, D. K., & Simeonidou, D. (2011). A novel ingress node design for video streaming over optical burst switching networks. Optics Express, 19(26), 191-194.
[59] Hussein, D. H., & Askar, S. (2023). Federated learning-enabled SDN for routing emergency safety messages (ESMs) in IoV under 5G environment. IEEE Access, 11, 141723-141739.
[60] Abdulazeez, D. H., & Askar, S. K. (2023). Offloading mechanisms based on reinforcement learning and deep learning algorithms in the fog computing environment. IEEE Access, 11, 12555-12586.
[61] Ibrahim, M. A., & Askar, S. (2023). An intelligent scheduling strategy in fog computing system based on multi-objective deep reinforcement learning algorithm. IEEE Access, 11, 133607-133622.
[62] Abdulazeez, D. H., & Askar, S. K. (2024). A novel offloading mechanism leveraging fuzzy logic and deep reinforcement learning to improve IoT application performance in a three-layer architecture within the fog-cloud environment. IEEE Access, 12, 39936-39952.
[63] Pallathadka, H., Askar, S., Kulshreshta, A., Sharma, M. K., Widatalla, S., & Mudae, I. (2024). Economic and environmental energy scheduling of smart hybrid microgrid based on demand response. International Journal of Integrated Engineering, 16(9), 351-365.
[64] Yang, Y., Patil, N., & Askar, S. (2025). Machine learning-guided study of residual stress, distortion, and peak temperature in stainless steel laser welding. Applied Physics A, 131, 44.
[65] Xiao, W. Q. P., Qi, H., Xu, Y., & Z. L. (2020). An efficient elephant flow detection with cost-sensitive in SDN.
[66] Valenti, D. R., & S. (2020). Fine-grained traffic classification with NetFlow data.
[67] Qazi, J. L. Z. A., Jin, T., Bellala, G., Arndt, M., & Noubir, G. (2023). Application-awareness in SDN.
[68] Nakao, A., & Du, P. (2024). Toward in-network deep machine learning for identifying mobile applications and enabling application-specific network slicing.
[69] Nadeem, M. U., & T. (2023). TrafficVision: A case for pushing software-defined networks to wireless edges.
[70] Wang, S. C. L. P., & Luo, M. (2023). A framework for QoS-aware traffic classification using semi-supervised machine learning in SDNs.
[71] Yanjun, L. X. L., & Osamu, Y. (2024). Traffic engineering framework with machine learning-based meta-layer in software-defined networks.
[72] Azzouni, R. B. A., & Pujolle, G. (2022). NeuRoute: Predictive dynamic routing for software-defined networks.
[73] Chen-Xiao, C., & Ya-Bin, X. (2023). Research on load balance method in SDN.
[74] Jain, M. K. S., Katkar, A., & Nygate, J. (2022). Applying big data technologies to manage QoS in an SDN.
[75] Stadler, R. P., & R. (2021). Learning end-to-end application QoS from OpenFlow switch statistics.
[76] Letaifa, A. B. (2017, June). Adaptive QoE monitoring architecture in SDN networks: Video streaming services case. In 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 1383-1388). IEEE.
[77] Del Testa, D., Danieletto, M., Di Nunzio, G. M., & Zorzi, M. (2016, December). Estimating the number of receiving nodes in 802.11 networks via machine learning techniques. In 2016 IEEE Global Communications Conference (GLOBECOM) (pp. 1-7). IEEE.
[78] Del Testa, D., Danieletto, M., & Zorzi, M. (2017). A machine learning-based ETA estimator for Wi-Fi transmissions. IEEE Transactions on Wireless Communications, 16(11), 7011-7024.
[79] Jiang, W., Strufe, M., & Schotten, H. (2017, May). Autonomic network management for software-defined and virtualized 5G systems. In European Wireless 2017; 23th European Wireless Conference (pp. 1-6). VDE.
[80] Bendriss, J., Yahia, I. G. B., & Zeghlache, D. (2017, March). Forecasting and anticipating SLO breaches in programmable networks. In 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN) (pp. 127-134). IEEE.
[81] Orfanidis, C. (2016, April). Ph. D. forum abstract: Increasing robustness in WSN using software defined network architecture. In 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN) (pp. 1-2). IEEE.
[82] Song, C., Park, Y., Golani, K., Kim, Y., Bhatt, K., & Goswami, K. (2017, July). Machine-learning based threat-aware system in software defined networks. In 2017 26th international conference on computer communication and networks (ICCCN) (pp. 1-9). IEEE.
[83] Hurley, T., Perdomo, J. E., & Perez-Pons, A. (2016, December). HMM-based intrusion detection system for software defined networking. In 2016 15th ieee international conference on machine learning and applications (icmla) (pp. 617-621). IEEE.
[84] Nobakht, M., Sivaraman, V., & Boreli, R. (2016, August). A host-based intrusion detection and mitigation framework for smart home IoT using OpenFlow. In 2016 11th International conference on availability, reliability and security (ARES) (pp. 147-156). IEEE.
[85] Nanda, A., Chilukuri, G. R., & Kapat, S. (2023, March). Frequency domain design techniques in digitally voltage and current mode-controlled dc-dc converters with fast transient performance. In 2023 IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 762-768). IEEE.
[86] Wang, P., Chao, K. M., Lin, H. C., Lin, W. H., & Lo, C. C. (2016, November). An efficient flow control approach for SDN-based network threat detection and migration using support vector machine. In 2016 IEEE 13th international conference on e-business engineering (ICEBE) (pp. 56-63). IEEE.

Downloads

Published

2025-03-11

How to Cite

Control Traffic in SDN Systems by using Machine Learning techniques: Review. (2025). International Journal of Research and Applied Technology (INJURATECH), 5(1), 1-24. https://doi.org/10.34010/injuratech.v5i1.15764