Unique Aspects of Usage of the Quadratic Cryptanalysis Method to the GOST 28147-89 Encryption Algorithm

  • Bardosh Akhmedov National universitet of Uzbekistan
Keywords: GOST 28147-89, selected plaintext, quadratic approximation, correlation matrix, quadratic cryptanalysis

Abstract

In this article, issues related to the application of the quadratic cryptanalysis method to the five rounds of GOST 28147-89 encryption algorithm are given. For example, the role of the bit gains in the application of the quadratic cryptanalysis method, which is formed in the operation of addition according to mod232 used in this algorithm is described. In this case, it is shown that the selection of the relevant bits of the incoming plaintext and cipher text to be equal to zero plays an important role in order to obtain an effective result in cryptanalysis

References

Akhmedov B.B., Aloev R.D. Application of quadratic cryptanalysis for a five round XOR modification of the encryption algorithm GOST 28147-89 // International Journal of Science and Research (IJSR), https://www.ijsr.net/search_index_results_paperid.php?id=SR20818180335, Volume 9 Issue 8, August 2020, 1101 – 1109, ISSN: 2319-7064, India).
Akhmedov B.B. “Nonlinear cryptanalysis for modification of the XOR Encryption algorithm GOST 28147-89”, I Международная научно-практическая интернет-конференция «Актуальные вопросы физико-математических и технических наук: теоретические и прикладные исследования», г.Киев. 2021 г. 81-97 стр. www.openscilab.org.
Кuryazov D.M., Sattarov A.B., Akhmedov B.B. Блокли симметрик шифрлаш алгоритмлари бардошлилигини замонавий криптотаҳлил усуллари билан баҳолаш. Ўқув қўлланма. Т.: «Aloqachi». 2017, 228 бет.
State standard of the USSR. Information processing systems. Cryptographic protection. The cryptographic conversion algorithm GOST 28147-89. IPK publishing house of standards Moscow, 1989.
Kaliski B., Robshaw M. Linear Cryptanalysis Using Multiple Approximations // Advances in Cryptology -CRYPTO’94 (Proc. 14th Annual International Cryptology Conference. Santa Barbara, California, USA. August 21–25, 1994). Lecture Notes in Comput. Sci. V. 839. Berlin:Springer, 1994.P.26–39.
Biryukov A., De Canniere C., Quisquater M. On Multiple Linear Approximations // Advances in Cryptology — CRYPTO 2004 (Proc. 24th Annual International Cryptology Conference. Santa Barbara, California, USA. August 15-19, 2004). Lecture Notes in Comput. Sci. V. 3152. Springer–Verlag, 2004. P. 1–22.
Sakurai K., Furuya S. Improving Linear Cryptanalysis of LOKI91 by Probabilistic Counting Method // Fast Software Encryption — FSE’97 (Proc. 4th International Workshop, Haifa, Israel. January 20-22, 1997). Lecture Notes in Comput. Sci. V. 1267. Berlin: Springer, 1997. P. 114–133.
Rothaus O. On bent functions//J.Combin. Theory. Ser.A. 1976. V. 20. N 3. P. 300–305.
Logachev, O.A., Sal’nikov, A.A., and Yashchenko, V.V., Boolean Functions in Coding Theory and Cryptology, Moscow: Mos. Tsentr Nepreryvnogo Mat. Obrazovaniya (MCCME), 2004.
Dobbertin H., Leander G. A Survey of Some Recent Results on Bent Functions // Sequences and their applications — SETA 2004 (Proc. Third International Conference. Seul, Korea. October 24–28, 2004). Lecture Notes in Comput. Sci. V. 3486. Berlin: Springer, 2005. P. 1–29.
Chee S., Lee S., Kim K. Semi-bent Functions // Advances in Cryptology — ASIACRYPT ’94 (Proc. 4th International Conference on the Theory and Applications of Cryptology. Wollongong, Australia. November 28 – December 1, 1994). Lecture Notes in Comput. Sci. V. 917. Berlin:Springer, 1995. P. 107–118.
Dobbertin H., Leander G. Cryptographer’s Toolkit for Construction of 8-Bit Bent Functions //Cryptology ePrint Archive, Report 2005/089, available at http://eprint.iacr.org/.
Qu C., Seberry J., Pieprzyk J. Homogeneous Bent Functions // Discrete Applied Mathematics. 2000. V. 102. N 1–2. P. 133–139.
Youssef A., Gong G. Hyper-bent functions // Advances in cryptology — EUROCRYPT’2001 (Proc. International Conference on the Theory and Application of Cryptographic Techniques. Innsbruk, Austria. May 6–10, 2001). Lecture Notes in Comput. Sci. V. 2045. Berlin: Springer, 2001. P. 406–419.
Kuz’min, A.S., Markov, V.T., Nechaev, A.A., and Shishkov, A.B., Approximation of Boolean Functions by Monomial Ones, Diskret. Mat., 2006, vol. 18, no. 1, pp. 9–29.
Carlet C., Gaborit P. Hyper-bent functions and cyclic codes // J. Combin. Theory. Ser. A.2006. V. 113. N 3. P. 466–482.
Youssef A.M. Generalized hyper-bent functions over GF(p) // Discrete Applied Mathematics. 2007. V. 155. N 8. P. 1066–1070.
Kuz’min, A.S., Markov, V.T., Nechaev, A.A., Shishkin, V.A., and Shishkov, A.B., Bent and Hyper-bent Functions over a Field of 2ℓ Elements, Probl. Peredachi Inf., 2008, vol. 44, no. 1, pp. 15–37.
Knudsen L.R., Robshaw M.J.B. Non-linear Approximation in Linear Cryptanalysis // Advances in Cryptology — EUROCRYPT’96 (Proc. Workshop on the Theory and Application of Cryptographic Techniques. Saragossa, Spain. May 12–16, 1996). Lecture Notes in Comput. Sci. V. 1070. Springer-Verlag, 1996. P. 224–236
Published
2022-12-26
How to Cite
[1]
B. Akhmedov, “Unique Aspects of Usage of the Quadratic Cryptanalysis Method to the GOST 28147-89 Encryption Algorithm”, INJIISCOM, vol. 3, no. 2, pp. 31-40, Dec. 2022.