DOI: 10.34010/komputika.v10i2.4404

ISSN: 2252-9039 (print) ISSN: 2655-3198 (online)

Penerapan Modified K-Nearest Neighbor dengan Algoritma Genetika Pada Prediksi PM10 di Pekanbaru

Fitri Insani^{1*}, Syarifatun Nissa²

^{1,2)}Program Studi Teknik Informatika,, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Jalan HR. Soebrantas Panam Km. 15 No. 155, Tuah Madani, Kec. Tampan, Kabupaten Kampar, Riau 28293 *email: fitri.insani@uin-suska.ac.id

(Naskah masuk: 14 Januari 2021; diterima untuk diterbitkan: 14 April 2021)

ABSTRAK – Pencemaran udara merupakan suatu kondisi udara yang tercemar oleh bahan-bahan, zat-zat, atau partikel kimia dan juga bahan biologi lainnya yang membahayakan kesehatan makhluk hidup. Salah satu zat yang menyebabkan pencemaran udara adalah PM10. PM10 (particulate matter) atau lebih dikenal dengan partikel debu adalah partikel udara dalam wujud padat yang berdiameter kurang dari 10 µm. Dampak PM10 dalam udara dapat dirasakan langsung oleh masyarakat, seperti gangguan pernafasan. Penelitian prediksi PM10 sebelumnya sudah banyak dilakukan sebelumnya. Salah satu metode yang dapat memprediksi PM10 yaitu Modified K-Nearest Neighbor (MKNN) . Namun, MKNN mempunyai kekurangan yaitu k bias dan komputasi yang kompleks. Berdasarkan kekurangan metode MKNN, maka dilakukan perbaikan dengan mengoptimasi nilai k menggunakan Algoritma Genetika. Data PM10 yang digunakan merupakan data PM10 per 30 menit pada bulan Juli sampai bulan Desember tahun 2015 yang diambil dari laboratorium udara kota Pekanbaru. Data ini kemudian diubah menjadi deret waktu dengan 48 variabel masukan dan 1 variabel keluaran. Hasil dari penelitan ini menunjukkan bahwa metode MKNN dapat memprediksi PM10 dengan error terendah yaitu 8,957 dan metode Algoritma Genetika dapat mencari nilai k optimal pada MKNN dengan k optimal yaitu 3.

Kata Kunci - Algoritma genetika; deret waktu; modified k-nearest neighbor; PM10; prediksi.

The Implementation of Modified k-Nearest Neighbor with Genetic Algorithm on PM10 Prediction at Pekanbaru

ABSTRACT – Air pollution is an air condition that is polluted by materials, substances, or chemical particles and also other biological materials that harm the health of living things. One of the substances that causes air pollution is PM_{10} . PM_{10} (particulate matter) or better known as dust particles are air particles in solid form with diameter less than 10 μ m. The impact of PM_{10} in the air can be directly felt by people, such as respiratory disorders. There were many researches about PM_{10} predition had been done. One method that can predict PM10 is Modified K-Nearest Neighbor (MKNN). However, MKNN method has disadvantages, namely k-bias and complex computing. Based on the disadvantages of MKNN method, improvements were made by optimizing the value of k using Genetic Algorithm. The PM10 data used are PM10 data each 30 minutes from July to December 2015 which were taken from the Pekanbaru city air laboratory. The data was converted into a time series with 48 input variables and 1 output variable. The result of this study shows that MKNN can predict PM10 with the lowest error that is 8.957 and the genetic algorithm can find the optimal-k value in MKNN with optimal-k that is 3.

Keywords - Modified K-Nearest Neighbor; Genetic Algorith;, PM10, Prediction; Time Series.

1. Pendahuluan

 $Particulate\ matter\ (PM10)$ atau lebih dikenal dengan partikel debu adalah partikel udara dalam wujud padat yang berdiameter kurang dari 10 μ m.

Kadar PM10 diudara sering berubah-ubah. Berdasarkan data yang didapat dari laboratorium udara di Pekanbaru PM10 diukur setiap 30 menit, sedangkan menurut data dari Badan Meteorologi,

Klimatologi, dan Geofisika (BMKG) PM10 diukur setiap 1 jam. Dampak PM10 dalam udara dapat dirasakan langsung oleh masyarakat, seperti gangguan pernafasan pada manusia dan terhambatnya proses fotosintesis pada tumbuhan [1].

Penelitian prediksi udara sudah banyak dilakukan oleh peneliti sebelumnya [1]-[10]. Selain menggunakan beberapa metode yang sudah digunakan peneliti sebelumnya, prediksi udara juga dapat diukur dengan metode modified k-nearest neighbor (MKNN). MKNN merupakan metode yang dikembangkan dari metode k-nearest neighbor (KNN), namun dalam algoritma MKNN menambahkan proses baru untuk melakukan prediksi yaitu, validitas perhitungan nilai untuk mempertimbangkan validitas antar data latih dan pehitungan nilai weighted voting untuk menghitung bobot [11]. Penelitian dengan menggunakan metode MKNN sudah banyak dilakukan sebelumnya[11]-[15]. Namun ternyata MKNN juga memiliki kekurangan yaitu k bias dan komputasi yang kompleks [16]. Pada penelitian selanjutnya bisa dilakukan dengan hibridisasi MKNN dan algoritma heuristik seperti Algoritma Genetika yang terbukti efektif untuk permasalahan yang kompleks [17].

Berdasarkan beberapa kekurangan metode MKNN, maka dilakukan perbaikan dengan mengoptimasi nilai k menggunakan Algoritma Genetika. Algoritma Genetika dipilih karena sudah terbukti dapat digunakan untuk melakukan optimasi pada nilai k untuk MKNN [18]. Selain itu Algoritma Genetika dipilih karena Algoritma Genetika yang terbukti efektif untuk permasalahan yang kompleks dalam waktu yang relatif cepat [19].

Penelitian menggabungkan metode MKNN dan Algoritma Genetika sudah dilakukan oleh beberapa peneliti sebelumnya [16], [18], [20]. Berdasarkan hasil beberapa penelitian diatas Algoritma Genetika terbukti dapat mengoptimasi MKNN sehingga didapatkan nilai K optimal.

Pada penelitian ini akan dibangun suatu aplikasi matlab yang dapat memprediksi PM10 dengan kombinasi MKNN dan Algoritma Genetika. Metode Algoritma Genetika dalam penelitian ini digunakan untuk mendapatkan nilai K optimal dari metode MKNN, sedangkan metode MKNN digunakan untuk mencari hasil prediksi PM10. Data PM10 yang digunakan dalam penelitian ini merupakan data deret waktu PM10 per 30 menit yang didapat dari laboratorium udara kota Pekanbaru.

Lebih lanjut hasil penelitian dapat membantu memberikan informasi kadar PM10 30 menit kemudian dan penelitian ini membuktikan bahwa Algoritma Genetika mampu menghasilkan nilai k optimal untuk metode MKNN.

2. METODE DAN BAHAN

Tahapan proses prediksi menggunakan metode optimasi MKNN menggunakan Algoritma Genetika ini dibagi menjadi tiga proses yaitu analisa kebutuhan data, proses pelatihan dan proses pengujian.

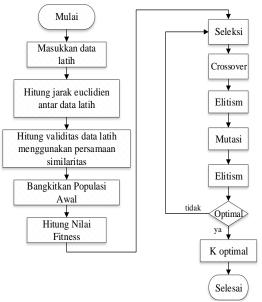
1. Kebutuhan Data

Data yang dibutuhkan dalam penelitian ini adalah data deret waktu. Data yang digunakan merupakan data kadar PM10 dari tanggal 1 Juli 2015 pukul 00.30 hingga data kadar PM10 dari tanggal 31 Desember 2015 pukul 24.00. Data kadar PM10 didapat dari laboratorium udara kota Pekanbaru dapat dilihat pada Tabel 1.

Tabel 1. Data kadar PM10

No	Tanggal	Jam	Kadar PM10
1	1 Juli 2015	00:30	31
2	1 Juli 2015	01:00	34
3	1 Juli 2015	01:30	38
4	1 Juli 2015	02:00	40
5	1 Juli 2015	02:30	43
•••			
8640	31 Desember 2015	24:00	23

Selanjutnya data tersebut diubah menjadi data deret waktu dengan 48 variabel masukan (t-48, t-47, t-46, t-45, ..., t-1) dan 1 variabel keluaran (t).


Tabel 2. Data deret waktu kadar PM10 di kota

	Pekanbaru												
No	t-48	t-	t-	t-45	•••	t -1	T						
		47	46										
1	31	34	38	40	•••	23	24						
2	34	38	40	43		24	35						
3	38	40	43	52		35	46						
4	40	43	52	61		46	39						
5	43	52	61	60		39	31						
					•••								
2812	9	8	9	12	•••	24	24						

Data pada Tabel 2 selanjutnya akan dibagi menjadi 2 bagian yaitu data latih dan data uji. Persentase data latih dan data uji yang digunakan dalam penelitian ini yaitu 70%:30%, 80%:20%, dan 90%:10%.

2. Proses Pelatihan

Ada beberapa tahapan dalam proses pelatihan. Gambar proses pelatihan dapat dilihat pada Gambar 1.

Gambar 1. Proses pelatihan

Tahap 1: Masukkan data latih

Tahap 2: Hitung jarak *euclidien* antar data latih dengan menggunakan rumus persamaan 1.

$$D = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$
 (1)

dimana x adalah sampel data, y adalah data uji dan D adalah jarak.

Tahap 3: Hitung nilai validitas antar data latih menggunakan persamaan similaritas. Rumus validitas data latih dan similaritas dapat dilihat pada persamaan 2 dan 3.

$$S(a,b) \begin{cases} 1 & a=b \\ 0 & a \neq b \end{cases}$$
 (2)

dimana S adalah nilai similaritas antar data latih, a dan b adalah kelas antar data latih.

Validitas (x)=
$$\frac{1}{H}\sum_{i=1}^{H} S(lbl(x), lbl(Ni(x)))$$
 (3)

dimana H adalah jumlah titik terdekat dan (x) adalah label kelas titik terdekat.

Tahap 4: Representasi kromosom. Untuk menentukan kromosom maka harus ditentukan populasi dari kromosom. Misal populasi yang diinginkan adalah 3. Maka secara *random* akan dibangkitkan kromosom (kemungkinan solusi) sebanyak 3 buah, dengan ketentuan, nilai k < data latih. Misal hasil kromosom didapatkan 3, 9, 4. Selanjutnya nilai kromosom tersebut diubah menjadi

biner, misal menjadi 0011 untuk kromosom 3, 0100 untuk kromosom 4 dan 1001 untuk kromosom 9.

Tahap 5: Menghitung nilai fitness. Rumus nilai fitness pada penelitian ini dapat dilihat pada persamaan 4.

Nilai
$$fitness = \frac{jumlah \ validitas \ data \ latih \ (k)}{jumlah \ data \ latih}$$
 (4)

Tahap 6: Seleksi dengan *roulette wheel*. Tahapan dalam seleksi *roulettle wheel* yaitu:

Menghitung jumlah nilai *fitness* dari semua individu dalam suatu populasi dengan rumus pada persamaan 5.

$$total\ fitness = \sum_{i=1}^{n} fitness \tag{5}$$

Setelah itu hitung nilai probabilitas tiap individu dengan rumus pada persamaan 6.

$$Probabilitas (n) = \frac{fitness}{total fitness}$$
 (6)

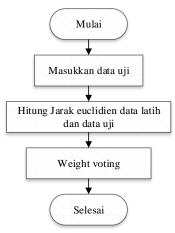
Hitung probabilitas kumulatif tiap individu dengan rumus pada persamaan 7.

Probabilitas kumulati
$$f(n) = \sum_{i=1}^{n} probabilitas(n)$$
 (7)

Tahap 7: Crossover one point. Pada proses ini dilakukan penukaran nilai gen induk pertama dan induk kedua dari posisi awal sampai dengan posisi akhir untuk diperoleh anak pertama dan anak kedua.

Tahap 8: *Elitism*. Proses *elitism* tahap ini dilakukan dengan cara menggabungkan individu hasil *crossover* dengan individu pada populasi awal. Dari hasil penggabungan ini kemudian akan dibagi dua kelas yaitu individu terbaik dan individu terburuk. Kelas individu terbaik akan disimpan sedangkan kelas individu terburuk akan dimutasi.

Tahap 9: Mutasi. Pada kromosom biner, mutasi dilakukan dengan mengubah gen biner 0 menjadi 1 dan 1 menjadi 0. Untuk mendapatkan gen yang akan dimutasi haruslah ada probabilitas mutasi. Probabilitas mutasi yang digunakan pada penelitian ini adalah 0,1.


Tahap 10: *Elitism*. Proses *elitism* pada tahap ini yaitu populasi hasil mutasi akan digabungkan dengan kelas individu terbaik, kemudian dari penggabungan tersebut akan diambil individu-individu dengan nilai tertinggi sejumlah populasi.

Tahap 11: Didapat individu terbaru dari nilai fitness terbaik. Selanjutnya proses Algoritma Genetika akan diulang mulai dari seleksi hingga *elitsm* untuk

mendapatkan nilai optimal sampai generasi yang sudah ditentukan.

3. Proses Pengujian

Langkah langkah-langkah proses pengujian menggunakan metode optimasi MKNN dengan Algoritma Genetika dapat lihat pada Gambar 2.

Gambar 2. Proses pengujian

Tahap 1. Masukkan data uji.

Tahap 2. Hitung jarak *euclidien* dari data latih ke data uji dengan rumus seperti persamaan 1.

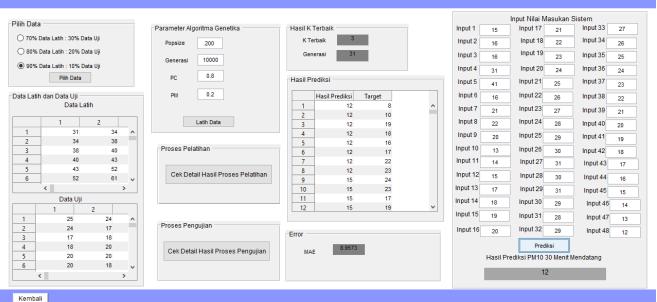
Tahap 3. Hitung bobot (weight voting) menggunakan rumus seperti persamaan 8.

Weight voting (i)= Validitas (x) x
$$\frac{1}{de+\alpha}$$
 (8)

dimana Validitas (x) adalah nilai validasi data, de adalah jarak *euclidien*, dan α adalah nilai regulator *smoothing* (pemulusan).

Setelah didapat nilai weight voting, urutkan nilai weight voting dari yang terbesar hingga terkecil.

Ambil urutan nilai weight voting sebanyak nilai k. Bila sebanyak nilai k terdapat lebih 1 nilai weight voting yang memiliki kesamaan kelas maka nilai weight voting dijumlah terlebih dahulu, setelah itu tiap nilai weight voting yang kelasnya berbeda dibandingkan. Dan ambil nilai terbesar sebagai kelas hasil prediksi data uji.


3. HASIL DAN PEMBAHASAN

3.1 Penerapan Menggunakan Aplikasi Matlab

Implementasi penelitian ini yaitu dengan menggunakan aplikasi matlab. Penerapan menggunakan aplikasi matlab dimulai dengan menampilkan halaman utama seperti yang ditunjukkan pada Gambar 3.

Pada halaman menu utama ini berisi inti dari proses prediksi PM10 dengan menggunakan metode MKNN dan Algoritma Genetika. Pada menu ini user akan memilih perbandingan data latih dan data uji, lalu data latih dan data uji muncul. Setelah data latih dan data uji muncul user akan memasukkan parameter yang terdiri data *popsize*, generasi, PC dan PM. Selanjutnya user dapat melihat hasil detail dari proses pelatihan dan pengujian. Halaman proses pelatihan dapat dilihat pada Gambar 4 dan proses pengujian dapat dilihat pada Gambar 5.

Pada halaman proses pelatihan akan muncul beberapa proses dan jika dipilih tampilkan maka akan muncul tabel hasil masing-masing proses. Pada kategori *crossover* ada 3 tahap yaitu nilai random, kromosom yang akan disilangkan dan hasil *crossover*. Nilai random *crossover* dapat dilihat pada Gambar 6 dan kromosom yang akan disilangkan dapat dilihat pada Gambar 7. Gambar 8 merupakan salah satu hasil dari proses pengujian yaitu jarak euclidien antar data latih.

Gambar 3. Halaman utama

F Insani & S Nissa Komputika: Jurnal Sistem Komputer, Vol. 10, No. 2, OKtober 2021

Gambar 4. Halaman proses pelatihan

1 0.4229
2 0.0942
3 0.5985
4 0.4709
5 0.6959
6 0.6999
7 0.6385
8 0.0336
9 0.0688
10 0.3196
11 0.5309
12 0.6544
13 0.4076
14 0.8200
15 0.7164
16 0.9886
17 0.5313
18 0.3251
19 0.1056
20 0.6110
21 0.7788
22 0.4235
23 0.9908
24 0.2665
25 0.1537
26 0.2810
27 0.4401
28 0.5271

Gambar 5. Halaman Proses Pengujian

Gambar 6. Nilai random crossover

			_		-	- 1	_					
4	1 1	2	3	4	5		7 0	8	9	10	11	12
2	1	0	0	0	0	0	1	0	0	1	1	1
3	0	0	1	0	1	1	0	0	0	0	0	1
4	1	0	0	1	0	1	1	1	0	1	1	1
5	1	0	0	1	1	0	0	ò	1	o	1	
6	1	0	0	1	1	0	0	1	1	0	0	0
7	0	1	0	0	1	1	0	0	1	1	0	1
8	0	1	1	1	1	1	1	0	1	0	0	1
9	0	1	0	0	0	0	1	0	1	1	0	0
10	1	0	0	1	0	1	1	1	1	1	0	0
11	0	1	1	0	0	1	1	1	1	1	0	0
12	0	0	0	0	0	1	0	1	1	0	1	1
13	1	0	0	0	0	1	1	0	0	1	0	1
14	0	1	1	1	0	1	1	1	1	1	1	0
15	0	0	1	1	1	1	1	0	0	0	0	1
16	0	1	1	0	0	1	1	1	1	0	1	1
17	0	0	0	1	1	0	1	1	0	0	1	0
18	0	1	1	0	1	1	1	1	1	0	1	1
19	0	0	0	0	0	1	0	1	0	0	0	1
20	0	0	0	0	0	1	1	1	0	1	0	1
21	0	0	0	0	1	1	1	1	0	1	1	0
22	0	1	1	0	1	1	0	1	1	1	1	0
23	0	0	1	1	0	0	1	0	0	0	1	1
24	1	0	0	1	0	1	1	0	0	1	0	1
25	0	0	0	0	0	1	0	1	1	0	0	0
26	0	1	0	0	0	1	0	1	0	1	1	1
27	0	0	0	1	1	1	0	1	1	0	0	0
28	0	1	1	1	0	0	0	0	0	0	1	1
29	0		1	0	- 1	0	1	- 1	1	0	- 1	4

Gambar 7. Kromosom yang akan disilangkan

F Insani & S Nissa Komputika: Jurnal Sistem Komputer, Vol. 10, No. 2, OKtober 2021

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	0	199.4818	324.0710	377.2135	402.9256	420.0536	434.1705	449.8922	464.9495	477.0461	487.3582	496.7525	502.2669	501.6234	499.8470	502.2619
2	199.4818	0	199.7624	324.7414	377.4043	402.8076	419.8726	434.0369	449.7677	464.9495	477.4233	488.3052	497.8745	503.5703	502.4878	500.1820
3	324.0710	199.7624	0	200.0250	324.7106	377.3182	402.4500	419.3483	433.5528	449.4118	464.8505	477.7499	488.7965	498.5218	503.8561	502.3296
4	377.2135	324.7414	200.0250	0	200.1375	325.0185	377.0915	401.8370	418.8007	433.1201	449.1013	464.8107	477.8535	489.0256	498.4887	503.4789
5	402.9256	377.4043	324.7106	200.1375	0	200.2748	324.8030	376.7307	401.5184	418.5857	433.1201	449.4752	465.3010	478.4402	489.3363	498.4456
6	420.0536	402.8076	377.3182	325.0185	200.2748	0	200.3222	324.9831	376.8780	401.7362	419.1241	434.1497	450.5741	466.4429	479.2932	489.8265
7	434.1705	419.8726	402.4500	377.0915	324.8030	200.3222	0	200.4221	325.0385	376.9629	402.0100	419.7249	434.7574	451.1430	466.9058	479.5654
В	449.8922	434.0369	419.3483	401.8370	376.7307	324.9831	200.4221	0	200.4221	325.0262	376.9841	402.1691	419.8202	434.7287	451.2139	466.9732
9	464.9495	449.7677	433.5528	418.8007	401.5184	376.8780	325.0385	200.4221	0	200.4121	325.0754	377.1962	402.3183	419.8500	434.8391	451.2992
0	477.0461	464.9495	449.4118	433.1201	418.5857	401.7362	376.9629	325.0262	200.4121	0	200.5019	325.3337	377.3871	402.4040	419.9833	434.9138
1	487.3582	477.4233	464.8505	449.1013	433.1201	419.1241	402.0100	376.9841	325.0754	200.5019	0	200.6215	325.3706	377.3195	402.4239	419.9750
2	496.7525	488.3052	477.7499	464.8107	449.4752	434.1497	419.7249	402.1691	377.1962	325.3337	200.6215	0	200.5817	325.2461	377.3195	402.4127
3	502.2669	497.8745	488.7965	477.8535	465.3010	450.5741	434.7574	419.8202	402.3183	377.3871	325.3706	200.5817	0	200.5193	325.2461	377.2333
4	501.6234	503.5703	498.5218	489.0256	478.4402	466.4429	451.1430	434.7287	419.8500	402.4040	377.3195	325.2461	200.5193	0	200.4071	324.9692
15	499.8470	502.4878	503.8561	498.4887	489.3363	479.2932	466.9058	451.2139	434.8391	419.9833	402.4239	377.3195	325.2461	200.4071	0	200.2948
6	502.2619	500.1820	502.3296	503.4789	498.4456	489.8265	479.5654	466.9732	451.2992	434.9138	419.9750	402.4127	377.2333	324.9692	200.2948	0
7	511.7089	502.8031	500.1820	502.0578	503.5663	499.0842	490.1938	479.6697	467.1017	451.4233	434.9322	419.9607	402.3382	377.0146	324.9138	200.3023
18	529.6508	512.4285	502.9612	500.0300	502.2718	504.3283	499.5198	490.3132	479.8187	467.2547	451.4621	434.9287	419.9190	402.1890	376.9947	324.9138
19	548.8005	531.2090	513.2115	503.1918	500.8483	503.8938	505.4444	500.1290	490.9766	480.4716	467.6302	451.5783	434.9575	419.7761	402.3444	377.3659
:0	562.5895	551.5487	532.9756	514.2110	505.0248	503.7718	506.1116	506.9260	501.6862	492.5140	481.5693	468.2585	452.0874	435.2505	420.5425	403.5146
1	572.5487	566.1440	553.9946	534.5596	516.7640	508.8330	506.7800	508.2411	509.1228	503.8502	494.1599	482.6479	469.2142	452.8289	436.5352	422.2973
22	580.8330	577.0026	569.3567	556.2239	537.8569	521.4883	512.7095	509.6724	511.2074	512.0215	506.1393	495.7883	484.1498	470.4987	454.7197	438.9738
23	578.8825	575.8038	570.3552	561.4615	550.0491	534.0056	517.5780	508.6354	505.5363	506.6064	506.2677	498.7905	487.2587	474.0475	462.4327	448.6758
24	548.0794	544.0901	538.8182	531.6625	525.1800	516.9855	501.0758	484.4997	474.7515	470.4275	469.7286	466.7847	456.5665	441.1768	431.1496	422.9373
25	538.8748	536.9311	530.9105	524.0878	519.1926	515.7393	507.6790	491.5537	474.5735	463.9364	457.9410	455.1318	450.6573	438.1689	425.3669	418.1638
16	540.4054	543.2799	539.5035	532.0282	526.9848	524.3749	520.2999	511.4929	495.5381	478.3858	466.6283	459.1699	455.6753	450.2799	439.4849	428.3655
27	537.7732	544.8055	546.0421	541.0028	535.0019	531.8581	528.5887	523.7394	515.0437	498.9820	480.9802	468.0993	460.1521	455.9693	451.8529	442.2974
28	531.5176	542.0517	547.6249	547.7563	543.8787	539.3997	535.5530	531.4866	526.7248	517.9479	501.2375	482.4417	469.2771	460.8894	457.5806	454.2532
n	£25 Q011	535 8461	544 8853	E40 3344	550 5060	548 2053	543 0433	538 4134	534 4287	520 5640	520 1211	502 6400	483 5845	470	462 4835	4EQ QE11

Gambar 8. Jarak euclidien antar data latih

3.2 Pengujian Sistem

Bagian ini menerangkan hasil pengujian GMKNN dan MKNN tanpa optimasi. Pengujian dilakukan dengan 3 pembagian data latih dan data uji yaitu 70%:30%, 80%:20% dan 90%:10%.

Pengujian MKNN dengan optimasi Algoritma Genetika menggunakan parameter perpaduan probabilitas *crossover* (PC) dan probabilitas mutasi (PM). Pengujian ini dilakukan untuk mendapatkan hasil Mean Absolute Error (MAE), generasi Algoritma Genetika dan waktu. Waktu yang digunakan untuk menghitung dimulai dari proses pelatihan sampai didapatkan hasil prediksi. Tabel 3 sampai Tabel 5 menunjukkan hasil pengujian MKNN dan Algoritma Genetika.

Tabel 3. Hasil pengujian MKNN dengan Algoritma Genetika dengan data latih 90%, data uji 10%

No	Parameter		Pop size = 1	.00		Pop size = 2	200		Pop size = 300			
		MAE	Generasi	Waktu(s)	MAE	Generasi	Waktu(s)	MAE	Generasi	Waktu(s)		
1	PC = 0.9	8,957	128	200,897	8,957	167	345,654	8,957	582	876,114		
	PM = 0.1											
2	PC = 0.8	8,957	113	181,651	8,957	38	55,873	8,957	52	79,567		
	PM = 0.2											
3	PC = 0.7	8,957	45	63,912	8,957	58	70,873	8,957	48	64,872		
	PM = 0.3											
4	PC = 0.6	8,957	284	497,128	8,957	45	69,760	8,957	141	187,345		
	PM = 0.4											
5	PC = 0.5	8,957	53	86,531	8,957	59	77,898	8,957	140	176,315		
	PM = 0.5											
6	PC = 0.4	8,957	395	653,634	8,957	90	150,986	8,957	471	998,520		
	PM = 0.6											
7	PC = 0.3	8,957	1264	2341,653	8,957	499	778,456	8,957	167	331,829		
	PM = 0.7											
8	PC = 0.2	8,957	147	289,771	8,957	88	120,845	8,957	141	298,920		
	PM = 0.8											

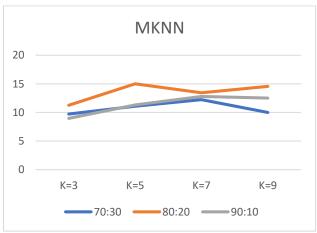
Berdasarkan hasil dari Tabel 3 dengan data latih 90%, didapatkan hasil pengujian terbaik pada popsize=200, PC= 0,8 dan PM=0,2 dengan MAE= 8,957 yang terdapat pada generasi ke 38 dengan waktu pengujian 55,873 detik. Pengujian dengan data latih 80% pada Tabel 4, didapatkan hasil terbaik pada popsize=300, PC= 0,8 dan PM=0,2 dengan

MAE= 11,25 yang terdapat pada generasi ke 63 dengan waktu pengujian 123,102 detik. Berdasarkan pengujian pada Tabel 5 dengan data latih 70%, hasil terbaik didapatkan pada popsize=300, PC= 0,2 dan PM=0,8 dengan MAE= 9,71 yang terdapat pada generasi ke 70 dengan waktu pengujian 136,493 detik

Tabel 4. Hasil pengujian MKNN dengan Algoritma Genetika dengan data latih 80%, data uji 20%

No	Parameter	1 0 7	Pop size =	100		Pop size = 2	200	Pop size = 300			
		MAE	Generasi	Waktu(s)	MAE	Generasi	Waktu(s)	MAE	Generasi	Wakt(s)	
1	PC = 0.9	11,25	293	517,145	11,25	427	905,240	11,25	389	760,106	
	PM = 0.1										
2	PC = 0.8	11,25	337	594,805	11,25	135	286,200	11,25	63	123,102	
	PM = 0.2										
3	PC = 0.7	11,25	475	838,375	11,25	371	786,520	11,25	364	711,256	
	PM = 0.3										
4	PC = 0.6	11,25	380	670,700	11,25	72	152,640	11,25	466	910,564	
	PM = 0.4										
5	PC = 0.5	11,25	250	441,250	11,25	334	708,080	11,25	384	750,336	
	PM = 0.5										
6	PC = 0.4	11,25	134	236,510	11,25	342	725,040	11,25	466	910,564	
	PM = 0.6										
7	PC = 0.3	11,25	460	811,900	11,25	258	546,960	11,25	205	400,570	
	PM = 0.7										
8	PC = 0.2	11,25	479	845,435	11,25	64	125,056	11,25	165	322,410	
	PM = 0.8										

Tabel 5. Hasil pengujian MKNN dengan Algoritma Genetika dengan data latih 70%, data uji 30%


No	Parameter		Pop size = 1	100		Pop size = 2	200		Pop size = 3	300
		MAE	Generasi	Waktu(s)	MAE	Generasi	Waktu(s)	MAE	Generasi	Wakt(s)
1	PC = 0.9	9,71	190	402,800	9,71	407	793,609	9,71	334	651,267
	PM = 0.1									
2	PC = 0.8	9,71	105	222,600	9,71	138	269,086	9,71	105	204,739
	PM = 0.2									
3	PC = 0.7	9,71	284	602,080	9,71	76	148,192	9,71	405	789,709
	PM = 0.3									
4	PC = 0.6	9,71	321	680,520	9,71	430	838,457	9,71	340	662,966
	PM = 0.4									
5	PC = 0.5	9,71	488	1034,560	9,71	435	848,207	9,71	485	945,706
	PM = 0.5									
6	PC = 0.4	9,71	236	500,320	9,71	303	590,819	9,71	471	998,520
	PM = 0.6									
7	PC = 0.3	9,71	433	844,307	9,71	320	623,968	9,71	167	331,829
	PM = 0.7									
8	PC = 0.2	9,71	451	879,405	9,71	70	136,493	9,71	141	298,920
	PM = 0.8									

Berdasarkan hasil pengujian GMKNN pada penelitian ini didapat K optimal adalah K=3. Hal ini dibuktikan dengan melakukan pengujian metode MKNN tanpa optimasi yang mana didapatkan hasil error terendah yaitu pada nilai K=3. Grafik untuk pengujian MKNN tanpa optimasi dapat dilihat pada Gambar 9.

Setelah dilakukan penelitian ternyata prediksi menggunakan metode MKNN dengan Algoritma Genetika menggunakan data deret waktu ini memiliki kelemahan yaitu pada tahap validitas data terdapat banyak hasil 0 karena target yang tidak sesuai sehingga berpengaruh pada proses weight voting.

Saran untuk penelitian selanjutnya yang ingin menggunakan metode MKNN dengan Algoritma

Genetika ini sebaiknya menggunakan target berbentuk kategori bukan numerik.

Gambar 9. Grafik error pengujian metode MKNN

4. KESIMPULAN

Kesimpulan dari pengujian penggunaan metode MKNN dengan Algoritma Genetika untuk prediksi PM10, yaitu:

- 1. Berdasarkan pengujian MKNN dan pengujian MKNN menggunakan Algoritma Genetika, dapat disimpulkan bahwa Algoritma Genetika berhasil mendapatkan nilai K terbaik.
- 2. Penerapan metode Algoritma Genetika pada MKNN memberikan hasil K optimal yaitu 3.
- 3. Hasil pengujian terbaik dari pengujian pembagian data = 90%:10%, popsize = 200, PC = 0,8 dan PM = 0,2 dengan MAE= 8,957 pada generasi ke 38 dengan waktu 55,873.
- 4. Perbandingan nilai PC dan PM terbaik berdasarkan jumlah generasi Algoritma Genetika yaitu PC=0,3 PM=0,7.
- 5. Penelitian ini menghasilkan hasil yang kurang baik karena metode MKNN tidak cocok menggunakan data deret waktu. Pada tahap validitas data terdapat banyak hasil 0 karena target yang tidak sesuai sehingga berpengaruh pada proses weight voting.

UCAPAN TERIMA KASIH

Terima kasih kami ucapkan kepada laboratorium udara kota Pekanbaru yang mendukung dan membantu dalam pelaksanaan penelitian ini.

DAFTAR PUSTAKA

- [1] C. Bernadeta and A. Suharsono, "Peramalan Kandungan Particulate Matter (PM10) dalam Udara Ambien Kota Surabaya Menggunakan Double Seasonal ARIMA (DSARIMA)," J. Sains Dan Seni ITS, vol. 4, no. 2, 2015.
- [2] V. Yadav and S. Nath, "Daily Prediction of PM10 using Radial Basis Function and Generalized Regression Neural Network," *IEEE Int. Conf. 2018 Recent Adv. Eng. Technol. Comput. Sci. RAETCS 2018*, pp. 1–5, 2018.
- [3] Z. Kang and Z. Qu, "Application of BP neural network optimized by genetic simulated annealing algorithm to prediction of air quality index in Lanzhou," 2017 2nd IEEE Int. Conf. Comput. Intell. Appl. ICCIA 2017, vol. 2017–Janua, pp. 155–160, 2017.
- [4] M. M. Dedovic, S. Avdakovic, I. Turkovic, N. Dautbasic, and T. Konjic, "Forecasting PM10 concentrations using neural networks and system for improving air quality," 2016 11th Int. Symp. Telecommun. BIHTEL 2016, 2016.
- [5] A. R. D. M. A. A. BUDI WARSITO, "Pemodelan General Regression Neural Network Untuk

- Prediksi Tingkat Pencemaran Udara Kota Semarang," *Med. Stat.*, vol. 1, no. 1, pp. 43–51, 2008.
- [6] N. F. Arifien, S. Arifin, B. L. Widjiantoro, and A. S. Aisjah, "Prediksi Kadar Polutan Dengan Menggunakan Jaringan Syaraf Tiruan (Jst) Untuk Pemantauan Kualitas Udara Di Kota Surabaya," Semin. Nas. Tek. Kim. Soebardjo Brotohardjono IX, pp. 1–11, 2012.
- [7] M. Venkatadri, "A Novel Air Quality Prediction Model Using Artificial Neural Networks," *Int. J. Eng. Res. Technol.*, vol. 3, no. 2, pp. 2973–2978, 2014.
- [8] E. G. Dragomir, "Air Quality Index Prediction using K-Nearest Neighbor Technique," Bulletin of PG University of Ploiesti, Series Mathematics, Informatics, Physics LXII, vol. 1, no. 1, pp. 103– 108, 2010.
- [9] M. Oprea, M. Popescu, S. F. Mihalache, and E. G. Dragomir, "Data Mining and ANFIS Application to Particulate Matter Air Pollutant Prediction," 9th Int. Conf. Agents Artif. Intell. (ICAART 2017), vol. 1, no. Icaart, pp. 551–558, 2017.
- [10] R. E. Putra and T. Indriyani, "Penerapan Aturan Asosiasi Dengan Algoritma Apriori Untuk Analisis Polutan Udara Di Surabaya," *Semin. Nas. Sist. Inf. Indones.*, no. November, pp. 253–258, 2015.
- [11] F. Wafiyah, N. Hidayat, and R. S. Perdana, "Implementasi Algoritma Modified K-Nearest Neighbor (MKNN) untuk Klasifikasi Penyakit Demam," *J. Pengemb. Teknol. Inf. dan Ilmu Komput.*, vol. 1, no. 10, pp. 1210–1219, 2017.
- [12] H. Parvin, H. Alizadeh, and B. Minati, "A Modification on K-Nearest Neighbor Classifier," *Glob. J. Comput. Sci. Technol.*, vol. 10, no. 14, pp. 37–41, 2010.
- [13] Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, "Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification," *Proc. 2017 2nd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2017*, vol. 2018–Janua, pp. 294–298, 2018
- [14] Z. S. Putri, R. Regasari, and M. Putri, "Deteksi Autisme pada Anak Menggunakan Metode Modified K-Nearest Neighbor (MKNN)," *J. Pengemb. Teknol. Inf. dan Ilmu Komput.*, vol. 1, no. 3, pp. 241–248, 2017.
- [15] H. Parvin, H. Alizadeh, and B. Minaei-bidgoli, "MKNN: Modified K-Nearest Neighbor," *Proc. World Congr. Eng. Comput. Sci.* 2008, pp. 22–25, 2008.
- [16] F. D. Astuti, D. E. Ratnawati, and A. W. Widodo, "Deteksi Penyakit Kucing dengan Menggunakan Modified K-Nearest Neighbor

- Teroptimasi (Studi Kasus: Puskeswan Klinik Hewan dan Satwa Sehat Kota Kediri)," *J. Pengemb. Teknol. Inf. dan Ilmu Komput.*, vol. 1, no. 11, pp. 1295–1301, 2017.
- [17] T. H. Simanjuntak and W. F. Mahmudy, "Implementasi Modified K-Nearest Neighbor Dengan Otomatisasi Nilai K Pada Pengklasifikasian Penyakit Tanaman Kedelai," *J. Pengemb. Teknol. Inf. dan Ilmu Komput.*, vol. 1, no. 2, pp. 75–79, 2017.
- [18] S. Mutrofin, A. Izzah, A. Kurniawardhani, and M. Masrur, "Optimasi teknik klasifikasi modified k nearest neighbor menggunakan

- algoritma genetika," *J. Gamma*, vol. 10, no. 1, pp. 130–134, 2014.
- [19] R. Sulistiyorini and W. F. Mahmudy, "Penerapan algoritma genetika untuk permasalahan optimasi distribusi barang dua tahap," Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol 5, no. 12, pp. 1-12, 2015.
- [20] W. J. Shudiq, "Penerapan K-Nearest Neighbor Berbasis Algoritma Genetika Untuk Klasifikasi Mutu Padi Organik," Pros. SNATIF, pp. 121–126, 2017.