Abstract

Multiple membership merupakan keanggotaan yang dimiliki oleh seseorang pada beberapa komunitas. Multiple membership pada dokumen artinya suatu dokumen dapat mengandung konten dari beberapa jenis kategori. Jenis kategori pada dokumen dapat ditentukan dengan mengukur kemiripan dokumen tersebut dengan kategori yang ada. Vector Space Model adalah suatu model yang digunakan untuk mengukur kemiripan antara suatu dokumen dan suatu query dengan mewakili setiap dokumen dalam sebuah koleksi sebagai sebuah titik dalam ruang vektor. Hasil dari pengukuran kemiripan tersebut merupakan nilai cosine similarity antara vektor query dari dokumen terhadap vektor kategori. Permasalahan yang terjadi adalah suatu pengukuran kemiripan vektor query dokumen, dapat menghasilkan nilai cosine similarity dengan selisih yang kecil antara vektor kategori satu dengan vektor kategori lain. Hal ini menyebabkan kedua vektor kategori tersebut menjadi saling dominan satu sama lain pada dokumen. Oleh karena itu, dibutuhkan suatu nilai batas untuk menentukan kondisi kapan suatu vektor kategori dapat dinyatakan sebagai vektor kategori yang saling dominan. Penetapan nilai batas ini menggunakan K-Means Clustering. Nilai batas ini ditetapkan berdasarkan pengelompokkan nilai jarak antar presentase cosine similarity pada suatu dokumen. Penentuan multiple membership dokumen ini akan dilakukan pada atribut judul dan kata kunci pada dokumen publikasi ilmiah.