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Abstract. This paper presents the design and performance testing of the Enhanced 

Informed Probabilistic Roadmap (EI-PRM) algorithm in path planning in various 
environments, such as simple environments, dense environments and narrow paths. 

This research evaluates the effectiveness of the algorithm in terms of solution cost and 

computation time by testing different parameter configurations, including number of 

sample points (nsample) and cost scaling factor (∝ 𝐶𝑏𝑒𝑠𝑡). The results show that the EI-
PRM algorithm can adjust the sampling strategy based on the available information, 

resulting in an optimal solution with high efficiency. During the test, in a simple 

environment with the parameter value of nsample between 200 and 400 and ∝ 𝐶𝑏𝑒𝑠𝑡  

parameter value between 1.2 and 1.4, the best solution cost is 344.93 and the 
computation time is 1.9 seconds. However, in a denser environment, the optimal 

solution cost reaches 141,586 with a computation time of 1.16 seconds, a parameter 

value of nsample 200, and a parameter value of ∝ 𝐶𝑏𝑒𝑠𝑡 1.5. Furthermore, the algorithm 

shows good performance on narrow paths with an optimal solution cost of about 

293.39 and the best computation time of 0.38 seconds at a parameter value of nsample 400 

∝ 𝐶𝑏𝑒𝑠𝑡  parameter 1.3. This research focuses on the importance of parameter 
optimization and efficient sampling strategies to improve path quality and speed up 

computation time. In general, the results indicate that the EI-PRM algorithm is 

effective for path planning under various environmental conditions. The process of 
the EI-PRM algorithm consists of several steps. First, sample points are created at 

random. In the second step, the computer will link the example locations to produce a 
roadmap. In the last step, the shortest path inside an ellipsoid-bounded search area 

will be determined. The size of the ellipsoid will increase gradually until the best path 
solution is found. This research is expected to contribute significantly to the 

development of path planning algorithms that are more efficient, faster and capable of 

producing high-quality paths in complex environments. This research has the 
potential to improve applications in transportation and logistics that require optimal 

path planning in order to reduce operational costs and improve safety. 

Keywords: Path planning, Probabilistic roadmap, Tunning parameter, Time 

computation, Cost. 
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1. Introduction 
A subfield of robotics research, path planning algorithms are widely used in vehicle and 

robot programming applications [1]. The goal of the path planning algorithms is to find a 
path that allows the robot to move from it’s home position to it’s destination while avoiding 

obstacles [2, 3]. Path planning algorithms are also widely used in a variety of applications, 
including automation [4], robot navigation [5], autonomous vehicles [6], digital character 
encoding [7],robotic surgery [8], and even in chemistry, such as protein folding processes [9]. 
The planning time and path optimization cost are two metrics used to assess the performance 

of various path planning algorithms, which vary in terms of performance [10], [11]. As a 
result, it is anticipated that these algorithms would generate ideal pathways quickly [12]. 
When enough time or iterations provide an optimal solution, a path planning method is 
considered to be asymptotically optimal [13], [14]. Shortest distance, comfort, least amount of 
risk, and energy efficiency are a few examples of optimality criteria  [15]. Random sampling, 

graphics, and sensor-based path planning are often employed techniques  [16].  
Many scholars have suggested algorithms with asymptotic optimality after studying path 

planning algorithms in great detail. All algorithms, how ever, operate differently. Proposed 
by  Karaman and Frazzoli, Rapidly-exploring Random Tree Star (RRT*) is  well-liked 

approach because it can yield asymptotically optimal solutions [17]. Nevertheless, RRT* has a 
drawback in that its computation time to reach an optimal solution still needs improvement. 
One factor that slows down RRT*'s computation is its requirement to sample the entire 
search space [18], [19], [20]. Researchers have also explored various methods, including 
hybridization, to enhance performance and achieve better solutions [21-24]. 

Gammell et al. [25] introduced the Informed RRT* algorithm, which utilizes sampling by 
restricting the configuration space based on information from the currently discovered path. 
According to Wang’s research [19], Informed RRT* outperforms the RRT* algorithm in terms 
of reaching more optimal solutions. Pakaya and Pohan’s Informed Probabilistic Road Map 

(Informed PRM) technique is another that has asymptotic optimality [26]. This Informed 
PRM method is a hybridization of the PRM and Informed RRT* algorithms. The study shown 
that Informed PRM can generate almost ideal routes in a range of testing conditions. 
Furthermore, this approach performs better in terms of calculation time and generated path 
quality than both RRT* and Informed RRT*. Nevertheless, one limitation of Informed PRM is 

that, depending on the situation, it may not always outperform Informed RRT*. 
Additionally, only the utilization of ellipsoid space between the initial and goal designs was 
suggested by this study [27]. 

Pohan [3] has again proposed the hybridization of path planning algorithms by merging 

the BFS method and path smoothing. The investigation proved that his approach can  create 
pathways that are higher quality than those produced by the RRT* algorithm. In contrast to 
the RRT* approach, this hybridization has a computational disadvantage. Path quality is 
significantly increased when BFS and path smoothing are combined, although computation 

time is still an issue, particularly in complicated circumstances. 
A hybrid sampling strategy was developed by Fauzi et al. [28] to expedite the pathfinding 

process of the RRT algorithm. Experiments showed that this method resulted in faster 
computation times, especially when sampling with 90% target biasing, 5% border, and 5% 
random. This method also proved to be more effective in complex environments, such as 

cluttered and narrow spaces. However, the study has some drawbacks. One of them is the 
reliance on the percentage combination of the sampling methods, which can influence the 
results. If the combination is not properly adjusted, the outcome may not be optimal. 
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Additionally, boundary sampling failed in several trials, indicating that sampling too close to 
obstacle surfaces can hinder the search process. 

Sopa et al. [29] designed an integrated sampling method by combining goal biasing, 
Gaussian, and boundary in the RRT* algorithm. Testing showed that this integrated method 
produced shorter paths and faster computation times compared to using the Gaussian and 
boundary methods separately. However, the study lacked exploration of sampling method 

optimization for real-world scenarios and broader applications of this integrated method. 
Malik and Pohan. [23] proposed a research on path planning algorithms that combine 

RRT with PSO. This study show that the proposed method outperforms RRT* and Informed 
RRT* in terms of path quality, computation time, and number of iterations required. 

However, there are certain drawbacks to the study, such as the narrow spectrum of disorders 
it examined, which may affect how generally relevant the results are. The complexity and 
processing time of this approach under more complex or dynamic conditions necessitate 
more testing to guarantee its implementation in real-world applications. 

The Enhanced Informed Probabilistic Roadmap (EI-PRM) algorithm is being developed 

and tested as a more reliable and efficient method of path planning. By improving the 
present Enhanced PRM technique, this work aims to solve some of the drawbacks found in 
previous research, such as long computation times, poor solution quality, and inefficient 
sampling throughout the search area under a variety of environmental situations. It is 

expected that this research will produce better solutions compared to the “RRT” and 
“Informed RRT” algorithms, as well as hybrid approaches such as “Informed PRM”. These 
algorithms produce near-optimal paths, but they have limitations under some conditions. 
Testing and evaluation of EI-PRM will be done by simulation using LabVIEW programming 
language to compare its performance with RRT* and Informed RRT* algorithms. 

Additionally, its adequacy will be tried with different benchmark settings, such as a confined 
way, a congested region, and a square space. As a result, it is anticipated that this inquire 
about will offer assistance create way arranging calculations that are quicker, more 
productive, and competent of making superior courses in troublesome circumstances. 

  
2. Method 

The goal of this project is to build an Informed PRM algorithm that, given the positions 

and lengths of the start and destination points, finds the optimal path by progressively 
shrinking the ellipsoid region after gradually expanding it to find the path’s starting point. 
This proposed approach is called the Enhanced Informed PRM (EI-PRM) algorithm. This 
path planning algorithm was tested with two parameters: sample points (nsample) and cost 

scalling factor (∝ 𝐶̂𝑏𝑒𝑠𝑡). The optimal parameter value tunning process is done by grid search 
method. An illustration of the pathfinding procedure informed by the EI-PRM algorithm (see 
Figure 1).  
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(a) The result of sample point 

generation 
(b) Roadmap creation (c) The shortest path result 

 

Figure 1. Illustration of the pathfinding procedure informed by the EI-PRM algorithm 

The illustration shown depicts the path planning process with the EI-PRM algorithm 
through three main steps. In the first step, sample points (denoted by red) are randomly 
generated in a search space containing various obstacles (denoted by black areas). This 

sampling aims to explore the search space and distribute points that are later used in 
roadmap generation. This process helps the algorithm gradually recognize areas that can be  
traversed by the robot. 

The second step is road map generation. Once the sample points are established, the 

algorithm connects the points using blue lines, which depict potential paths between two 
traversable points. This network of paths forms a road map, which is used to find a route 
from the starting point to the destination. The lines formed indicate connections between the 
sample points that are not obstructed by obstacles in the search space. The more connections 

formed, the more optimized the search space exploration process. 
In the final stage, the algorithm determines the shortest path that can be taken. When the 

iteration starts, the search area is bounded by an ellipsoid. If in the first iteration no solution 
or path connecting the starting point and the destination has been found, then the size of the 
ellipsoid will be gradually enlarged until a solution is found. After the solution path is 

found, in the next iteration the ellipsoid size will be reduced if a shorter path is found. This 
process continues to repeat until it reaches the maximum iteration limit set. The performance 
comparison of the EI-PRM algorithm with the RRT* and Informed RRT* algorithms will be 
discussed in Chapter III. 

The complete proposed algorithm (see Figure 2). Line 1 initializes the best value for path 
cost using the Euclidean distance from the starting position (qinit) to the destination position 

(qgoal). This value is multiplied by a constant factor (∝ 𝐶̂𝑏𝑒𝑠𝑡) to get an initial estimate of the 
best path cost. This initial estimate will be updated in subsequent iterations. In line 2, the 
algorithm will loop until a stopping condition is met. This stopping condition is usually 
determined based on the maximum number of iterations or when the optimal path solution 
has been found. Lines 3 and 4 initialize the set of nodes (V) and edges (E) connecting the 
nodes in the graph. V is the set of valid sample nodes (free from obstacles), while E is the set 

of possible paths between two nodes. Line 5 initializes the set of path solutions (Xsol) as an 
empty set that will later be filled with the shortest path solutions. In lines 6 to 10, random 
sampling from the search space is performed. The algorithm keeps adding random points 
(Xrand) taken at random until it reaches the desired number of samples (nsample). For each 

random point, the algorithm checks if the point is collision-free. If it is collision-free, the 



 
 
 
 
 

69 

 

International Journal of Research and Applied Technology 

 
5(1)(2025) 65-81 

Journal homepage: https://ojs.unikom.ac.id/index.php/injuratech  

point is added to the set V. In lines 12 to 19, the algorithm builds a graph from the collected 
points. For each point q in the set V, the algorithm selects neighbors (Nq) based on the closest 

distance. If there is an obstacle-free path between two points (q and q'), then the algorithm 
adds the path to the set E as a valid edge. On lines 20 to 21, the algorithm forms a graph T 
consisting of nodes (V) and edges (E). The algorithm then uses Dijkstra's algorithm to find 
the shortest path from the starting point (qinit) to the destination point (qgoal). The result is 

stored in the solution set Xsol. Once the path is found, the algorithm compares the cost of the 

new path with the previous solution. On line 22, the best cost value (𝐶̂𝑏𝑒𝑠𝑡) is updated by 
selecting the path that has the minimum cost from the set of solution paths (Xsol). If the 
stopping condition has not been met, the algorithm will iterate again to find a better solution 

path, by updating the 𝐶̂𝑏𝑒𝑠𝑡value to minimize the search space. 
 

 

Figure 2. EI-PRM algorithm 

The sampling process will be carried out using algorithm 2 (see Figure 3). The pseudocode 
of the EI-PRM sample algorithm mimics the Informed PRM algorithm proposed by H. O. 
Pakaya and M. A. R. Pohan [26]. This algorithm aims to generate random samples that will 

be used in the path planning process, taking into account the information from the best path 
that has been found before. It modifies the sampling strategy dynamically based on the 
search conditions. The process is divided into two main conditions: if the value of Cmax (the 
maximum distance between the starting point and the destination) is finite, or otherwise. If 
Cmax < ∞ (line 1) the algorithm starts by checking if the maximum distance (Cmax) is finite. If 

yes, this means the best path has been found and random samples will be generated in the 
space limited by Cmax. This approach aims to optimize the sampling process and speed up the 
search for a better solution. This usually happens when a path solution has been found in the 
previous iteration, and the algorithm wants to find a more optimal path around the best 

path. If the number of samples (|V|) collected is still less than half of the desired total 
number of samples (n/2), the algorithm will perform sampling within more focused 
constraints (lines 2-3). At this stage, the shortest distance (Cmin) between the start and goal 
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points is calculated using the Euclidean norm (straight line distance between two points). 
Then, the center of the best path (Xcentre) is calculated as the midpoint between the start point 

(Xstart) and the goal point (Xgoal) (lines 3-4). The algorithm converts the local coordinate system 
to the world coordinate system using a rotation matrix. This is necessary so that the resulting 
sample points are in the correct reference frame in the search space (line 5). The algorithm 
calculates the parameters of the ellipsoid that will be used to bound the sampling space. r1 is 

half of the Cmax value, which determines the principal radius of the ellipsoid along the 
principal axis. For the other axes, the algorithm calculates ri using a formula involving the 
difference between Cmax and Cmin. A diagonal matrix L is then created to represent the size of 
the ellipsoid along each axis (lines 6-8). At this stage, the algorithm generates a random 

sample point inside the unit ball (SampleUnitBall), then converts this point into a point 
inside the ellipsoid by applying the previously calculated rotation and scale. The result is a 
sample point (Xrand) that is confined in the ellipsoid space around the best path (lines 9-10). 

If the Number of Samples is Sufficient (Lines 11-13). If the number of samples that have 
been generated is more than half of the desired number (n/2), the algorithm changes the 

sampling strategy. In this case, the samples will be taken around the previously found best 
path, with the aim of improving the quality of the found path. The algorithm samples around 
the best path (Xsol) using a certain radius (d). This process allows the algorithm to focus on 
areas that are already known to be near-optimal, thus accelerating convergence towards the 

optimal solution (line 12). 
If Cmax = ∞ (Lines 14-16). If the value of Cmax is infinite, it means that the path solution has 

not been found or there is no limit that can be used to narrow the search space. In this case, 
the algorithm again uses the conventional random sampling strategy. The algorithm 
generates random samples evenly across the search space. This approach is taken when the 

information regarding the best path is still very limited or no solution has been found yet 
(line 15). After determining the appropriate sampling method, the algorithm returns random 
sample points (Xrand) that will be used to expand the graph in the next iteration. 

 

 

Figure 3. EI-PRM algorithm sample pseudocode 

This study also evaluates and compares the performance of the EI-PRM algorithm based 

on sample points (nsample) and cost scaling factor (∝ 𝐶̂𝑏𝑒𝑠𝑡) in various path planning scenarios 
with different complexity levels, including environmental conditions such as clutter, narrow, 
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and square field. This study involved six test environments that were repeated 10 times. The 
EI-PRM method was created using the LabVIEW programming language and the path 

planning library [30]. The tuning findings from earlier experiments or recommendations 
from the literature served as the foundation for the algorithm’s setup and settings. This 
approach is expected to yield a reliable and accurate path planning performance evaluation 
using the EI-PRM algorithm. 

3. Results and Discussion 
In research conducted by Malik and Pohan [23], discussed the combination of path 

planning algorithms with the RRT algorithm and the PSO algorithm using several test 
environments such as clutter, multiple narrow, square field and tough passage 
environments. The study also used an iteration value of 5000, but this algorithm still has 
shortcomings in computation time compared to the RRT * algorithm.  
Meanwhile, research conducted by Rahajoeningroem and Gunastuti [31], related to the 

performance study of path planning algorithms based on the informed rrt * algorithm. The 
study compared several variants of the informed RRT* algorithm using several test 
environments with different complexities. Such as a maze test environment, an environment 
with 50 obstacles, an environment with 100 obstacles, and an environment with 200 

obstacles.  
The output performance investigated in this study is the quality of the final solution, based 

on sample points (nsample) and cost scaling factor (∝ 𝐶̂𝑏𝑒𝑠𝑡). The tests, which include square 
field, clutter, and narrow test scenarios are based on LabVIEW software simulations. The 
exam consists of 10 trials, with an iteration value of 3000 for each environtment. This research 

also compares the EI-PRM algorithm, RRT* algorithm and Informed RRT* algorithm. This 
performance study can also help provide a better understanding of the selection of better 
path planning algorithms for more specific path planning applications. 
 
3.1 The Performance of the EI-PRM algorithm in a Environtment 02 – Simple Obstacle 

Table 1. show the best solution cost results in environment 02 - simple obstacle. While 
Table 2. shows the best computation time results in the 02-simple obstacle environment.  The 

best solution cost value obtained by the EI-PRM algorithm is 344.93, at a value of ∝ 𝐶̂𝑏𝑒𝑠𝑡 1 .2 
to 1.4 with an nsample value of 200 to 400. While the best computation time obtained by the EI-
PRM algorithm is 1.9 seconds.  
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Table 1. The best solution cost results of the EI-PRM algorithm in test environment 02 - 
simple obstacle 

Solution Cost 

nsample 
∝ 𝑪̂𝒃𝒆𝒔𝒕 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

100 344.96 
344.9

7 

344.9

32 

344.9

3 

344.9

32 

344.9

35 

344.9

35 

344.9

33 

344.9

5 

344.9

4 

200 
344.93

1 

344.9

3 

344.9

3 

344.9

31 

344.9

3 

344.9

3 

344.9

32 

344.9

32 

344.9

35 

344.9

31 

300 344.93 
344.9

31 
344.9

3 
344.9

3 
344.9

32 
344.9

32 
344.9

3 
344.9

3 
344.9

3 
344.9

3 

400 
344.93

1 
344.9

31 
344.9

32 
344.9

3 
344.9

32 
344.9

31 
344.9

31 
344.9

31 
344.9

3 
344.9

32 

500 
344.93

1 
344.9

32 
344.9

31 
344.9

31 
344.9

31 
344.9

3 
344.9

3 
344.9

3 
344.9

31 
344.9

3 
 

Table 2. The best computation time results of EI-PRM algorithm in environment 02-simple 
obstacle environment 

Time 

nsample 
∝ 𝑪̂𝒃𝒆𝒔𝒕 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

100 6.5 4.3 3.1 3.5 3 4.2 5.7 5.2 4.9 3.8 

200 5.8 2.6 3.9 3.2 2.7 3.7 4.1 3.4 5.6 2.1 

300 7.6 5.4 4.4 4.2 3.5 2.8 4.4 4.2 3.8 4.7 

400 3.8 3.3 2.2 2.9 2.4 2.1 3.1 3.8 4.5 4.3 

500 7.8 2.9 2 2.6 1.9 3.7 2.8 2.5 5.3 2.9 
 

The path with the best solution cost value generated by the EI-PRM algorithm after 10 trials 
with the nsample value parameter from 100 to 500, and the value parameter  

∝ 𝐶̂𝑏𝑒𝑠𝑡  from 1.1 to 2.0 (see Figure 4). 
 

 
Figure 4. The path with the lowest solution cost generated by the EI-PRM algorithm in the 

Environtment 02-Simple Obstacle 
 

3.2  The Performance of the EI-PRM algorithm in a Environtment 03 – Clutter 1 
Table 3. show the best solution cost results in environment 03 – clutter 1. While Table 4. 

shows the best computation time results in the environment 03-clutter 1. Overall, the best 
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Solution Cost often appears at ∝ 𝐶̂𝑏𝑒𝑠𝑡 = 1.2, 1.6, and 2.0 with a minimum value of 141,580, 

especially at nsample 100 to 400. The best time occurs at nsample 200, 300, and 500, with α  = 1.5, 
where the computation time is very low, which is below 1.5 seconds. The best combination of 

Solution Cost and Time was found at nsample 200 with ∝ 𝐶̂𝑏𝑒𝑠𝑡= 1.5, where Solution Cost 
141.586 and Time: 1.16 seconds. 

 
Table 3. The best solution cost results of the EI-PRM algorithm in test environment 03 – 

clutter 1 

Solution Cost 

nsample 
∝ 𝑪̂𝒃𝒆𝒔𝒕 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

100 
141.58

6 

141.5

8 

141.5

86 

141.5

86 

141.5

86 

141.5

86 

141.5

86 

141.5

86 

141.5

86 

141.5

8 

200 
141.58

6 
141.5

86 
141.5

86 
141.5

87 
141.5

86 
141.5

8 
141.5

88 
141.5

86 
141.5

86 
141.5

86 

300 
141.58

8 
141.5

86 
141.5

86 
141.5

8 
141.5

86 
141.5

88 
141.5

86 
141.5

86 
141.5

86 
141.5

8 

400 141.58 
141.5

86 
141.5

85 
141.5

86 
141.5

87 
141.5

86 
141.5

86 
141.5

85 
141.5

87 
141.5

8 

500 
141.58

6 

141.5

86 

141.5

87 

141.5

85 

141.5

86 

141.5

86 

141.5

86 

141.5

86 

141.5

86 

141.5

86 
 
Table 4. The best computation time results of EI-PRM algorithm in environment 03 – clutter 

1 

Time 

nsample 
∝ 𝑪̂𝒃𝒆𝒔𝒕 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

100 2.1 3.41 5.9 3.2 1.8 2.31 2.4 3.55 4.7 4.1 

200 8.7 2.7 2 1.81 1.16 2.64 2.3 3.25 4.75 4 

300 6.9 2.65 2.17 2.35 1.37 1.79 2.1 3.1 4.4 3.75 

400 2.4 2.11 1.8 2 1.49 2.43 1.36 1.67 1.99 1.83 

500 3.4 2.9 3 1.74 1.5 1.86 2.32 3.43 4.54 3.98 

 
The path with the best solution cost value generated by the EI-PRM algorithm after 10 trials 

with the nsample value parameter from 100 to 500, and the ∝ 𝐶̂𝑏𝑒𝑠𝑡 value parameter from 1.1 to 
2.0 (see Figure 5). 

 
Figure 5. The path with the lowest solution cost generated 

by the EI-PRM algorithm in the Environtment 03 - Clutter 1 
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3.3  The Performance of the EI-PRM algorithm in a Environtment 04 – Clutter 2 
Table 5. show the best solution cost results in environment 04 – clutter 2. While Table 6. 

shows the best computation time results in the environment 04 - clutter 2. The best Solution 
Cost was found at nsample 200 and 400, with = 1.5, which resulted in a minimum value of 

355,055. The best computation time occurs in nsample 500 with ∝ 𝐶̂𝑏𝑒𝑠𝑡= 1.5, where the 
computation time is only 2.07 seconds. In addition, nsample 400 also has a good time (4.41 

seconds at ∝ 𝐶̂𝑏𝑒𝑠𝑡= 1.5). The best combination of Solution Cost and Time is found in nsample 

400 with ∝ 𝐶̂𝑏𝑒𝑠𝑡= 1.5, with a Solution Cost value of 355.055 and Time of 2.07 seconds. 
 

Table 5. The best solution cost results of the EI-PRM algorithm in test environment 04 – 

clutter 2 

Solution Cost 

nsample 
∝ 𝑪̂𝒃𝒆𝒔𝒕 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

100 
355.05

8 

355.0

58 

355.0

58 

355.0

58 

355.0

58 

355.0

58 

355.0

58 

355.0

65 

355.0

61 

355.0

62 

200 
355.05

6 

355.0

58 

355.0

56 

355.0

58 

355.0

55 

355.0

57 

355.0

57 

355.0

6 

355.0

6 

355.0

56 

300 
355.05

6 
355.0

56 
355.0

56 
355.0

58 
355.0

56 
355.0

57 
355.0

56 
355.0

58 
355.0

56 
355.0

56 

400 
355.06

5 
355.0

57 
355.0

68 
355.0

56 
355.0

55 
355.0

55 
355.0

65 
355.0

56 
355.0

65 
355.0

57 

500 
355.05

6 
355.0

56 
355.0

56 
355.0

57 
355.0

56 
355.0

56 
355.0

56 
355.0

56 
355.0

57 
355.0

56 
 
Table 6. The best computation time results of EI-PRM algorithm in environment 04 – clutter 

2 

Time 

nsample 
∝ 𝑪̂𝒃𝒆𝒔𝒕 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

100 9.84 9.07 8.3 7.39 6.49 7.09 7.7 8.95 10.2 9.57 

200 8.2 8.29 8.38 6.71 5.05 6.44 7.84 6.69 5.55 6.12 

300 7.78 6.69 5.6 5.04 4.49 5.05 5.62 5.32 5.02 5.17 

400 5.5 5.67 5.84 5.12 4.41 5.31 6.22 5.51 4.81 5.16 

500 4.85 5.04 5.24 3.65 2.07 2.9 3.73 3.67 3.61 3.64 
 

The path with the best solution cost value generated by the EI-PRM algorithm after 10 trials 

with the nsample value parameter from 100 to 500, and the ∝ 𝐶̂𝑏𝑒𝑠𝑡 value parameter from 1.1 to 
2.0 (see Figure 6). 
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Figure 6. The path with the lowest solution cost generated 

by the EI-PRM algorithm in the Environtment 04 - Clutter 2 
 

3.4 The Performance of the EI-PRM algorithm in a BIT* Clutter Map 

Table 7. show the best solution cost results in BIT* clutter map. While Table 8. shows the 
best computation time results in the BIT* clutter map. The best Solution Cost is found at 

nsample 300 with ∝ 𝐶̂𝑏𝑒𝑠𝑡= 1.1, where the Solution Cost value is 432.12 (minimum value). The 

best computation time occurs at nsample 500 with ∝ 𝐶̂𝑏𝑒𝑠𝑡= 1.5, where the computation time is 

only 2.02 seconds. In addition, nsample 300 and 400 also have very fast times around 2.14 - 2.29 

seconds (at ∝ 𝐶̂𝑏𝑒𝑠𝑡= 1.5). The best combination of Solution Cost and Time is at nsample 300 

with ∝ 𝐶̂𝑏𝑒𝑠𝑡= 1.1, where Solution Cost reaches a minimum value of 432.12 even though the 
computation time is not the fastest (5.33 seconds). 
 

Table 7. The best solution cost results of the EI-PRM algorithm in test BIT* clutter map 

Solution Cost 

nsample 
∝ 𝑪̂𝒃𝒆𝒔𝒕 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

100 441.77 
467.3

5 

492.9

4 

433.8

4 

433.7

5 

441.4

5 

449.1

4 

445.8

5 

442.5

6 
442.2 

200 441.28 
442.7

5 
488.3

6 
460.5

2 
432.6

9 
437.6

2 
442.5

6 
442.5

6 
441.7

7 
442.1

6 

300 432.12 
441.7

7 
452.3

5 
441.9

5 
441.5

6 
449.1

4 
442.5

6 
441.7

7 
442.6

5 
442.2

1 

400 442.56 
442.5

6 
441.7

5 
442.7

7 
433.7

3 
441.7

7 
441.7

7 
441.7

7 
441.7

7 
442.5

6 

500 441.77 
441.7

7 

442.5

6 

441.5

6 

433.7

5 

442.5

6 

442.5

6 

442.1

6 

441.7

7 

442.9

6 
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Table 8. The best computation time results of EI-PRM algorithm in BIT* clutter map 

Time 

nsample 
∝ 𝑪̂𝒃𝒆𝒔𝒕 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

100 5.58 5.88 6.18 6.55 6.93 7.64 8.36 6.85 5.35 6.1 

200 8.3 6.95 5.61 4.16 2.71 6 9.29 6.74 4.2 5.47 

300 8.78 7.05 5.33 3.81 2.29 4.26 6.23 5.03 3.84 4.43 

400 6.76 4.73 2.68 2.41 2.14 3.37 4.6 4.58 4.56 4.57 

500 5.59 3.84 2.1 2.06 2.02 3.23 4.45 5.16 5.88 5.52 
 

The path with the best solution cost value generated by the EI-PRM algorithm after 10 trials 

with the nsample value parameter from 100 to 500, and the ∝ 𝐶̂𝑏𝑒𝑠𝑡 value parameter from 1.1 to 
2.0 (see Figure 7). 

 

 
 

Figure 7. The path with the lowest solution cost generated 
by the EI-PRM algorithm in the BIT* clutter map 

 
3.5 The Performance of the EI-PRM algorithm in a Multiple Narrow Environtment 

Table 9. show the best solution cost results in multiple narrow environtment. While Table 
10. shows the best computation time results in the multiple narrow environtment. The best 
Solution Cost is found in several combinations, namely nsample 200, 300, 400, and 500 with ∝

𝐶̂𝑏𝑒𝑠𝑡= 1.1, 1.3, 1.7, where the Solution Cost value is 427.16. The best computation time occurs 

at nsample 500 with ∝ 𝐶̂𝑏𝑒𝑠𝑡= 1.3, where the computation time is only 2.04 seconds. In general, 

α = 1.3 produces the fastest time on almost all nsample. The best combination of Solution Cost 

and Time is at nsample300 with ∝ 𝐶̂𝑏𝑒𝑠𝑡= 1.3, where the Solution Cost reaches a minimum value 
of 427.16 and the computation time is a very fast 2.4 seconds. 
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Table 9. The best solution cost results of the EI-PRM algorithm in test multiple narrow 
environtment 

Solution Cost 

nsample 
∝ 𝑪̂𝒃𝒆𝒔𝒕 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

100 427.52 
427.4

3 

427.3

4 

427.5

2 

427.5

2 

427.5

2 

427.5

2 
427.4 

427.2

9 

427.5

2 

200 427.16 
427.2

9 

427.1

6 

427.1

6 

427.3

4 

427.3

4 

427.3

4 

427.2

9 

427.3

4 

427.5

2 

300 427.16 
427.5

3 
427.1

6 
427.1

6 
427.5

2 
427.5

2 
427.1

6 
427.2

9 
427.3

4 
427.2

9 

400 428.29 
427.1

6 
427.1

6 
427.3

4 
427.2

9 
427.2

9 
427.5

2 
427.5

2 
427.1

6 
427.1

6 

500 427.16 
427.1

6 
427.2

3 
427.2

9 
427.1

6 
427.1

6 
427.5

2 
427.1

6 
427.2

9 
427.3

4 
 

Table 10. The best computation time results of EI-PRM algorithm in multiple narrow 
environtment 

Time 

nsample 
∝ 𝑪̂𝒃𝒆𝒔𝒕 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

100 3.86 3.25 2.64 5.24 7.82 6.7 5.57 5.41 5.25 5.46 

200 8.27 5.39 2.52 3.9 5.27 5.24 5.21 5.15 5.1 5.12 

300 7.82 5.11 2.4 3.7 5.01 5.02 5.04 4.84 4.65 4.74 

400 6.23 4.19 2.16 3.39 4.63 4.76 4.89 4.08 3.27 3.67 

500 4.77 3.4 2.04 2.42 2.8 3.24 3.68 3.31 2.94 3.12 
 

The path with the best solution cost value generated by the EI-PRM algorithm after 10 trials 

with the nsample value parameter from 100 to 500, and the ∝ 𝐶̂𝑏𝑒𝑠𝑡 value parameter from 1.1 to 
2.0 (see Figure 8). 
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Figure 8. The path with the lowest solution cost generated 

by the EI-PRM algorithm in the multiple narrow environtment 
 

3.6 The Performance of the EI-PRM algorithm in a Narrow Passage 
Table 11. show the best solution cost results in narrow passage. While Table 12. shows the 

best computation time results in the narrow passage. In general, at all nsample sizes (100, 200, 
300, 400, 500), the best values for solution cost are found to be around 293.39, especially in 

most configurations. 
At nsample 100, the lowest solution cost result is 293.12 in configuration 1.4, which is one of 

the lowest values in the whole table. While in nsample 300, the lowest result was also found to 
be 293.12 in 1.8. Overall, the most optimal solution cost is seen in nsample 300 and 400, with 
small and stable variations. Overall, the best (fastest) computation time was obtained in 

nsample 400 with configuration 1.3 which gave a time of 0.38 seconds. This very low time value 
indicates good efficiency in this sample. To get the best solution cost and time results, it is 
recommended to use nsample 400, because it produces the fastest time (0.38 seconds) with a 
very stable solution cost. 

 
Table 11. The best solution cost results of the EI-PRM algorithm in test narrow passage 

Solution Cost 

nsample 
∝ 𝑪̂𝒃𝒆𝒔𝒕 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

100 293.39 
294.0

9 
294.0

9 
293.1

2 
294.0

9 
294.0

9 
293.3

9 
293.4

5 
294.5

9 
294.0

9 

200 293.39 
293.3

4 
293.3

9 
293.4

5 
295.0

3 
293.3

9 
293.4

3 
293.4

5 
293.6

3 
293.5

8 

300 293.39 
293.3

9 

293.3

9 

293.3

9 

293.3

9 

293.3

9 

293.3

9 

293.1

2 

293.6

2 

293.3

9 

400 293.45 
293.3

9 

293.3

9 

293.1

2 

293.3

9 

293.2

9 

293.2

9 

293.4

5 

293.3

9 

293.3

9 

500 293.39 
293.3

9 
293.3

4 
293.3

9 
293.3

9 
293.3

9 
293.4

5 
293.3

9 
293.4

5 
293.1

6 
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Table 12. The best computation time results of EI-PRM algorithm in narrow passage 

Time 

nsample 
∝ 𝑪̂𝒃𝒆𝒔𝒕 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

100 1.72 1.26 0.8 1.02 1.25 1.58 1.92 5.81 9.7 7.75 

200 7.3 7.91 0.61 0.81 1.01 1.31 1.62 5.53 9.44 7.48 

300 1.45 1.67 1.89 1.3 0.72 1.03 1.35 5.12 8.89 7 

400 5.44 2.91 0.38 1.1 1.84 2.86 1.02 4.54 8.07 6.3 

500 3.55 2.65 1.75 106 0.38 0.57 0.76 3.89 7.03 5.46 
 

The path with the best solution cost value generated by the EI-PRM algorithm after 10 trials 

with the nsample value parameter from 100 to 500, and the ∝ 𝐶̂𝑏𝑒𝑠𝑡 value parameter from 1.1 to 
2.0 (see Figure 9). 

 

 
Figure 9. The path with the lowest solution cost generated by the EI-PRM algorithm in the narrow 

passage 
 

Path planning algorithm using this variant of the PRM algorithm has undergone many 
developments. In this EI-PRM algorithm research there are several interesting areas to be 
explored further. It is also possible to develop this algorithm using the integration between 
the EI-PRM algorithm and the techniques underlying deep learning [32]. Integrating deep 
learning improves the algorithm's ability to predict and overcome obstacles in unpredictable 

environments. This approach can help in reducing computation time and improving the 
quality of the generated paths. This EI-PRM algorithm can also be developed by conducting 
performance studies of other PRM algorithm-based path planning algorithms, such as in the 
research conducted by Rahajoeningroem and Gunastuti [31] who compared the performance 

of Informed RRT*-based path planning algorithms to enable the selection of more 
appropriate algorithms in more specific path planning applications. 

 
4. Conclusion 

This work investigates, designs and tests the path planning performance of the EI-PRM 
algorithm across a range of scenarios, including congested areas and constrained spaces. EI -
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PRM exhibits a good ability to strike a balance between solution cost and calculation time.  
Based on the available optimal path data, the algorithm can modify the sample preparation 

method. Six different scenarios are used to evaluate the performance of the algorithm, and 

the results show that the cost scaling factor (∝ 𝐶̂𝑏𝑒𝑠𝑡) and the number of sample points 
(nsample) have a significant impact on the results. For example, the bias of the optimal solution 
is 344.93 in the initial condition, and the computation takes 1.9 days with optimal parameters 
1.2-1.4 and 20. With an optimal parameter of 1.3 and a sample size of 400 , the approach 

shows effectiveness under challenging conditions. A good computation time is 0.38 seconds. 
This research also highlights how important it is to optimize the parameters by using grid 
search techniques to maximize the algorithm's capacity to determine the ideal spinning path. 
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