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Abstract. The Industrial Internet of Things (IIoT) is a fast-growing technology that 

might digitize and connect numerous industries for substantial economic prospects and 

global GDP growth. By the fourth industrial revolution, Industrial Internet of Things 
(IIoT) platforms create massive, dynamic, and inharmonious data from interconnected 

devices and sensors. Security and data analysis are complicated by such large diverse 
data. As IIoT increases, cyberattacks become more diversified and complicated, making 

anomaly detection algorithms less successful. IIoT is utilized in manufacturing, 
logistics, transportation, oil and gas, mining, metallurgy, energy utilities, and aviation. 

IIoT offers significant potential for industrial application development, however 

cyberattacks and higher security requirements are possible. The enormous volume of 
data produced by IoT devices demands advanced data analysis and processing 

technologies like deep learning. Smart assembly, smart manufacturing, efficient 
networking, and accident detection and prevention are possible with DL algorithms in 

the Industrial Internet of Things (IIoT). These many applications inspired this article on 

DL's IIoT potential. 

Keywords: Industrial Internet of Things (IIoT); cybersecurity; intrusion detection 

system and deep learning (DL). 

1. Introduction 
The Industrial Internet of Things (IIoT) is a vast network of smart devices that benefit 

cognitive computing in infrastructures and businesses, from manufacturing to services. 
Modern technology automates manufacturing and industrial processes in Industry 4.0 [1]. 

Integration of the Internet of Things (IoT) and large-scale machine-to-machine connections 
improves automation, communications, self-monitoring, and intelligent machines that can 
identify errors without human intervention. IIoT platforms require precise data collection, 
processing, and safe transmission due to vast sensors and devices working together. Despite 
the benefits and prospects of the IIoT revolution, hackers actively try to steal data or cause 

damage to IIoT and industrial devices [2]. More IIoT applications mean more security threats 
and cyberattacks. In the recent decade, various IIoT cyberattacks compromised software and 
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hardware, such as pumps and sensors [3],[4]. Stuxnet [5] was one of the initial 2010 IIoT 
assaults on security. Ukraine's power grid outage changed the customary security system [6] 

or Colonial Pipeline attack in the USA in 2021 are other instances [7]. These instances show 
that infrastructure and IIoT cyberattacks are expanding, posing security dangers to systems. 
Edge devices acting as IIoT nodes may disrupt industrial output (e.g., transmitters and sensors 
[8]) run in anomalous programs. Internal anomalies like abnormal traffic or irregular 

frequencies produce some of these anomalous behaviors, while external anomalies like 
attackers' destructive conduct cause others [9], [10], [11], [12]. To monitor and safeguard IIoT 
structures from assaults and discover unusual data, reliable anomaly prediction and detection 
techniques must be used. As shown in Fig. 1, an IIoT platform has four layers: physical (sensors 

and instruments for sensing and collecting data), transmission (sending or receiving data), 
storage and processing, and application (using data to provide a service or production). Due 
to the huge volume of data sensing (gathering and/or receiving), transferring, processing 
(storage), and usage complexity in IIoT, measuring location, sampling frequency, and 
transmission method and rate differ from traditional platforms [13], [14], [15]. These changes 

and other IIoT characteristics affect the form and quality of raw data, which may be high-
dimensional, large-scale, time-dependent, dynamic, or imbalanced [13] ,[16]. The IIoT 
platform's storage and processing layer senses, processes, and collects time-series data from 
distributed edge devices (nodes) to study their activity [17]. Therefore, time-dependency 

(time-series type) is a key property of IIoT data that aids data analysis and forecasting [18]. 
Data at a given time may be linked to a lengthy period of time or a previous point in time, 
depending on the short- and long-term. Such relationships require aberrant data. Thus, 
abnormal data at one time may be linked to past data. This dependence feature can better 
identify and anticipate IIoT dataset outliers.  

 
Figure 1. IIoT platform overview 

 
Two main types of anomaly and attack detection methods are anomaly-based and 

signature-based [2],[19], [20], [21]. Signature-based approaches can detect previously 

identified abnormalities (or those induced by humans) but not new ones [2],[22]. Raising the 
volume of abnormal data and previously reported anomalies complicates anomaly detection 
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and slows response time [23]. Furthermore, Refs introduced certain methods [24],[25] 
concentrating on log-based cyber threat hunting and federated threat hunting techniques [26]. 

These new solutions combat cyberattacks and security issues. IIoT systems have seen a 
significant surge in networked devices in the fourth industrial revolution. Intelligent big data 
processing is crucial to IIoT smart application performance. IIoT networks need intelligent 
information processing frameworks for massive data analysis. In this case, artificial 

intelligence (AI) and DL can help IIoT systems produce relevant outcomes from massive data 
[27],[28],[29]. DL approaches allow systems to learn from experience. Data properties and 
learning algorithm performance determine DL solution efficiency and efficacy [30]. The right 
DL algorithm for an application can be difficult to choose. Therefore, knowing how different 

DL algorithms operate and how they're used in practical applications like smart homes, smart 
cities, cybersecurity services, smart healthcare, smart transportation, sustainable agriculture, 
business enterprises, and others is crucial [31]. Analyzing developing and cutting-edge 
IoT/IIoT research can reveal the importance of DL. In Fig. 3, DL outperforms standard 
algorithms for big data sets. 

 
Figure 2. Comparing of IIoT DL and classical algorithms 

 

1.1. Intrusion Detection System (IDS) 

IDS monitors harmful attacks in interconnected networks or nodes. It defends the node or 
network from attacks [32]. An attack that damages sensor nodes is malevolent. IDS systems 
can be hardware or software. IDS can identify harmful network activities and known attacks 
from human behaviors. It analyzes node and network activity to detect intrusions and alerts 

users. It's an alert or network observer. System damage is prevented by alarm generating 
before illegal attacks. Internal and external attacks can be detected by the IDS. Malicious 
network nodes generate IAs. Third-party EAs are obtained elsewhere. IDS monitors network 
traffic to identify authorized and illegal users. IDS involves monitoring, investigation, and 

alert. The monitoring component tracks traffic, resources, and network patterns. Study is key 
to determining intrusions based on algorithm. When intruders are detected, alert module 
alarms. Three types of IDSs are listed below: 
1. Host-based IDS System (HIDS): A single or multiple host systems' design, operating 

system, and application files are estimated by HIDS. This system collects internal data to 

the operating system computer, monitors user activity, and systems program execution. It 
had better recovery, detailed logging, fewer false positives, and unknown attack prediction. 
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Unintelligible data, total coverage, indirect data, outsiders, and host influence are 
drawbacks. 

2. Anomaly-based IDS System (AIDS): This is event-based intrusion detection. Events are 
analyzed to identify harmful conduct. First, it details the attack's routine. An intrusion 
occurs when actions differ from typical. 

3. Network-based IDS System (NIDS): This system monitors network traffic through 

routers, switches, and network interface devices to detect intrusions. Network streams like 
internet packets capture most data. All LAN assaults can be detected by NIDS, which host-
based IDS cannot. Easy implementation, affordability, detection range, forensics integrity, 
and Every effort is NIDS advantages. Wire speed failure, direct attack susceptibility, 

indecipherable packets, and coverage problems are drawbacks. 

1.2. Requirement for IDS in Internet of Things (IoT) Networks 

IoT is an emerging technology that identifies physical objects that may exchange 

information. The items converse without human involvement. IoT is a smart network that 
exchanges data with recognized protocols over the internet. Thus, the user can access anything 
anytime, anyplace. It communicates and collaborates with objects to create new services and 
applications using unique addressing mechanisms. Smart cities, residences, environment, 

health monitoring, and water are its applications. IoT delivers many services for daily living 
based on its reliable and available actions, but it requires multi-class integrity, privacy, and 
verification solutions. The IoT network should be secure, and sensor data should be uploaded 
encrypted. In the IoT network, secure communication is crucial. Among the many IoT 
challenges, security is crucial since devices can be accessed from anywhere via unauthorized 

networks [33]. Without security analysis, important data can be attacked at any time. Thus, 
security vulnerabilities must be identified from these angles: 
1. Confidentiality: The aggressor can easily intercept the transmission from origin to 

destinations to leak user-sensitive data and modify it. Thus, secure data transformation 

matters most. 
2. Integrity: The receiving device should receive transmit data unchanged. Integrity ensures 

that unauthorised intruders did not modify transmitted data. 
3. Availability: Resources should be available as needed. Intruders can overload resources to 

disable access. Malicious attacks can impair this accessibility. 

4. Authenticity: It verifies identity. Users can identify others they communicate with. 
Validation is possible via verification. Thus, unauthorized attacks cannot interact.  

5. Non-repudiation: Increases transmitter and recipient inability to reject information. It 
verifies data origin and integrity. 

1.3. Requirement for IDS in Internet of Things (IoT) Networks 

IIoT is an innovative approach to smart manufacturing eco-systems using IoT for 

management of industrial processes. IIoT quickly grows the following sectors and services: 
Healthcare systems use IoT devices to track, sense, and monitor machines, patients, and drugs. 
IoT devices are used in agriculture for farm security, plant irrigation, and product storage 
management [34]. The supply chains industries depend on transportation and logistics [35]. 
IoT devices track vehicle movements in this field by determining its location. It also determines 

product supply time. In the energy sector, IIoT manages grid supply, billing, and leakage. IoT 
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devices manage warning systems, sense crisis signals, follow underground miners, and 
monitor shipments in the mining industry [36]. The automation industry's strength defines 

ICS, which includes SCADA networks and PLCs. Most cyberattacks target industrial 
automated systems as Stuxnet, German steel mill blast furnace, Shamoon, Mirai, etc. Many 
hacks target industrial companies worldwide. IoT devices have many weaknesses for 
cybercriminals to exploit industrial processes. Traditional networks have stable defenses. To 

defend industrial systems against intrusions, a strong intrusion detection technique is needed. 
Deep learning-based IIoT intrusion detection systems are described next. 
 
2. Review of Literature 

An Anomaly Detection System (ADS) packet capture and decoding engine monitors 
network traffic and detects unusual activities, improving security management [37]. Security 
monitoring and abnormal activity identification are its key tasks. Any deviation from these 

patterns can be detected by the ADS as potential intrusions, including known and unknown 
threats [38], by creating patterns from the regular data [38]. During semi-supervised feature 
selection, Coelho et al. [36] suggested measuring label and data cluster similarity using a 
homogeneity metric. They found that cluster information can help assess feature relevance and 

pick features when labelled data is scarce. Regarding the 42 elements that comprise the entire 
UNSWNB15 dataset, Primartha and Tama [39] investigated the effectiveness of detection 
systems for intrusions (IDSs). They assessed performance metrics' accuracy and false alarm 
rate using 10-fold cross-validation. This experiment used NSL-KDD, UNSW-NB15, and GPRS 
datasets. The study compared the suggested model to the multi-layered perception (MLP), 

Decision Tree, and NB-Tree classifiers. The results revealed that the cross-validation model 
and Random Forest classifier with particular parameter values worked. The [40] strategy 
selected informational components specific to each assault category rather than generic 
elements for all attacks. Testing with the CICIDS2017 dataset showed that the suggested 

strategy accurately detected intrusions. Dahiya et al. [41] They suggested using Apache Spark 
to develop an intrusion detection system. They reduced features using LDA and CCA. The 
Bayes naïve, REP Tree, Random Tree, Random Forest, Random Committee, and bagging 
methods are prominent categorization algorithms. A Convolutional Neural Network (CNN) 
was used in [42] to create a model for classifying malware. A dataset of 9,339 samples from 25 

different malware groups were used in the investigation, which had a remarkable accuracy 
rate of 94.5%. Similar to this, in [30], a deep CNN that used color image visualization to detect 
online malware threats was constructed. They found that cybersecurity threat categorization 
had improved. Researchers in [43] proposed the Random Coefficient Selecting and Mean 

Modification Method (RCSMMA)-based approach. Our system handled modern cyberattacks 
successfully. In [44], the authors discussed the potential applications of smart cities for 
malware attacks and the privacy and security issues that occur when designing smart city 
apps. Using multivariate tuples, a reliable steering and monitoring system was demonstrated 

by [44] to mitigate global sensor network adversaries. This protocol protected the sensor 
network against malware threats to increase security and integrity. 

2.1. The Role of DL in IIoT Security  

Industrial and commercial businesses can easily obtain important data from sensors, 
equipment, devices, instruments, and control systems via the IIoT. These devices might be at 
industries or in remote regions (agricultural, mining, oil and gas). New IIoT entry points are 
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added to achieve high connectivity on all levels of the pyramid. This highly networked design 
creates enormous attack surfaces and exposes IIoT systems to major cybersecurity concerns 

that must be considered. In fact, the sector has had several major cybersecurity issues. For 
example, the closure of a Saudi petrochemical factory was caused by TRISIS malware. Experts 
believe the attack was meant to murder workers by disabling the safety system and disrupting 
the petrochemical process. The attack killed no one, but the site lost millions due to the sudden 

shutdown [45]. Internet-connected webcams were used to cyberattack the Baku-Tbilisi-
Ceyhan (BTC) gas pipeline, shut down alarms, and over pressurize it, causing a huge explosion 
[46], [47]. Internet-connected mobile cards with weak authentication allowed hackers to access 
a Bowman Avenue Dam human-machine interface [48].  

These occurrences show that IIoT security and privacy are important and should be 
researched. Indeed, the industry has collaborated to identify IIoT system dangers and 
vulnerabilities and develop standards and best practices to mitigate them. The Industrial 
Internet Security Framework (IISF) [28], the security protocols described by the Agency for 
Cybersecurity of the European Union (ENISA) [49], and similar efforts by National Institute of 

Standards and Technology (NIST) [50] and IEEE [49] are some promising steps towards 
securing the IIoT. IIoT security is increasingly employing deep-learning technologies. Deep 
learning is typically used to detect intruders in IoT and IIoT infrastructures. The main methods 
are briefly reviewed below. IoT malicious traffic was detected using deep, fully-connected 

neural networks (DNN) [51]. The seminal work in [52] proposes using both CNNsss and 
LSTMs to learn both the low-level spatial features and the high-level temporal features of 
network traffic. Learned traits distinguish well from harmful network data. A combination of 
CNNs and RNNs is also proposed in [53] help safeguard systems from multiple threats via 
host-based intrusion detection. A vast body of literature suggests autoencoders are preferred 

for intrusion detection [54], [55], [56]. Deep-belief networks have also been used for intrusion 
detection [57]. Denial-of-service attacks and malware have also been solved by CNNs and deep 
reinforcement learning [58], [59],[60]. IIoT security challenges and solutions can be found in 
intriguing and extensive surveys in [61][62][63][64]. Over the last few years, deep-learning 

algorithms have gained popularity in IIoT cybersecurity research. The proposed approaches 
are computationally complex, which conflicts with the IIoT's constrained nature, where many 
devices may have limited battery capacity, memory, and processing power. The issue in 
adopting such methods is designing lightweight, maybe distributed or decentralized DL 
algorithms. 

2.2. Industrial Internet of Things Reference Architecture (IIoT) 

IIoT's seamless device connectivity has revolutionized modern technology during the past 

decade. Mobile apps, devices (smartwatches, tablets/iPads, laptops, etc.), and more send 
important data to IoT networks in this age of Internet access. These IoT/IIoT systems have 
unique architectures with layers and components that serve specific purposes [65],[66]. Fig. 3 
shows a detailed IIoT 7-layer design. 
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Figure 3. Industrial Internet of Things reference architecture 

2.2.1 Perception Layer 

Environmental data is collected and preprocessed by this “physical” layer. It digitizes 
analog data to make it compatible with other system layers[66]. Actuators and sensors make 

up this layer's major constituents. 
1. Sensors: These little devices can detect environmental changes and gather useful data. 

Sensors typically have limited memory and processing power. Modern sensors can acquire 
environmental cues more accurately. The most widely used sensors in numerous industries 

measure temperature, humidity, air pressure, weight, acceleration, position, and others. 
2. Actuators: Electromechanical devices usually transform electrical signals into physical 

actions. In industry, linear and rotary actuators are most common. Linear actuators convert 
electrical signals into linear motions for position adjustment. Meanwhile, rotary actuators 
convert electricity into rotation. These are used to control conveyor belt positions.  

2.2.2 Connectivity Layer 

This layer connects perception and edge layers using modern communication methods [67]. 

This layer allows two communication methods. TCP or UDP/IP stacks are used for direct 
communication in the first manner. Smart gateways connect LANs and WANs in another way. 
This layer uses several complex communication technologies and protocols. 
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1. WIFI: It's the most adaptable and widely utilized communication system. WiFi modems are 
ideal for personal and professional use, enabling LAN-WAN connections. 

2. Ethernet: This outdated technology allows LAN or WAN devices to interact via a specified 
protocol. Ethernet lets network wires like optical fiber to copper and inversely 
communicate. 

3. Bluetooth: This wireless protocol is commonly used in personal area networks for short-

distance information sharing. 
4. NFC: NFC wirelessly connects smart devices for secure short-range communication. The 

typical NFC communication range is 10 cm. 
5. LPWAN: For long-distance communication, a class of radio technologies known as Low-

Power Wide-Area Networks (LPWAN) is employed. Top LPWAN technologies include 
Nwave, Sigfox, and LoRa. Smaller data packets are typically sent over longer distances with 
LPWANs as opposed to other wireless technologies like Bluetooth and Wi-Fi. 

6. ZigBee: This device is specifically made for IEEE 802.15.4-compliant sensor networks by 
the Zigbee alliance. ISA-100.11. a and Wireless HART are the two most often utilized data 

transmission protocols for this communication standard. These protocols specify the 
physical layers and Media Access Control (MAC) needed to manage multiple devices at 
slow data speeds. 

7. LTE-M: One of the top LPWA network technologies for Internet of Things applications is 

Long Term Evolution for Machine. Through radio modules, it is utilized to connect items 
like Internet of Things actuators, sensors, and other industrial equipment. 

8. NB-IoT: This low-power wide-area (LPWA) technology is standards-based and supports a 
large range of smart devices and applications. The power consumption, spectrum 
efficiency, and system capacity of smart devices are all enhanced by NB-IoT. 

2.2.3 Edge Layer 

Latency often hinders IoT network expansion early on. Edge computing speeds IoT network 

growth, which may solve this problem. It helps the system process and analyze data near the 
source. Edge computing is already typical for 5G mobile networks, enabling increased system 
connectivity with less latency. All processes at the edge boost IoT network performance [68]. 

2.2.4 Processing Layer 

This layer stores and analyzes edge layer data [69]. These operations are all performed by 
IoT systems and include two main stages. This layer stores and analyzes edge layer data [69]. 
These operations are all performed by IoT systems and include two main stages. Data 

Abstraction: Consumer apps can gain insights from data after collection and preparation. It 
involves integrating data from many sources, reconciling formats, and aggregating data in one 
place. These methods are used combined to improve smart device interoperability. Common 
processing layer protocols are listed below: 

1. Transmission Control Protocol (TCP): It breaks up big data sets into packets and resends 
and reassembles them for host-to-host communication. 

2. User Datagram Protocol (UDP): Process-to-process communication is facilitated by this IP-
based protocol. UDP transfers data quicker than TCP, making it the preferred protocol for 
applications that are mission-critical. 
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3. Internet Protocol (IP): Many IoT protocols utilize IPv4, while newer ones use IPv6. The 
latest IP update directs Internet traffic and locates network devices 

2.2.5 Processing Layer 

Software evaluates data to offer promising answers to major business challenges in this tier. 

Versions of this layer show that thousands of IIoT apps differ in design complexity and 
functions. Each employs different OS and technologies. Software-controlled device 
monitoring, business intelligence (BI) services, AI-based analysis solutions, and mobile apps 
for simple interactions are popular uses. Recent approaches include building the application 

layer on top of IoT/IIoT frameworks that give software-based architectures with data 
visualization, mining, and analytics tools [70]. Some popular applications layer protocols are 
listed below. 
1. Advanced Message Queuing Protocol (AMQP): It lets messaging middleware talk. It 

allows many systems and applications to communicate, leading in large-scale standardized 

communications. 
2. Constrained Application Protocol (CoAP): Constrained-bandwidth network protocol for 

machine-to-machine communication between low-capacity devices. CoAP transfers 
documents via UDP. 

3. Data Distribution Service (DDS): A versatile peer-to-peer protocol that can connect high-
performance networks and tiny devices. DDS streamlines deployment, improves reliability, 
and reduces complexity. 

4. Message Queue Telemetry Transport (MQTT): A low-bandwidth messaging protocol for 
machine-to-machine and distant communications. The publisher-subscriber MQTT 

protocol is ideal for small devices with constrained battery life and bandwidth. 

2.2.6 Business Layer 

If beneficial for business planning and strategy, IoT data are useful. Every organization 
needs to extract meaningful data for goal-oriented tasks. Businesses set future goals using 
previous and present data. Modern companies use clever data analysis to improve decision-
making [71]. Industries have turned to software and business analytics to boost performance 

and profitability. 

2.2.7 Security Layer 

Due to rising problems, IIoT architecture must include security. Hacking, denial of service, 

malicious software, and data breaches are IIoT infrastructure's biggest issues [72]. Three 
primary tasks are carried out by this layer, which are as follows. 

2.3 Security Issues 

Many IoT security issues arise from limited storage, power, and processing capabilities. The 
effect of default user credentials allowing unauthorized access to IIoT devices remains 
unfixable [73]. Although manufacturers are aware of this defect, little is being done to address 
it, leaving users with a technological challenge. Ironically, IoT devices, as proven by Li et al. 

[74], About 48% of users are unaware that their gadgets could be exploited for cyberattacks, 
and 40% never update software. To reduce security threats, many believe manufacturers and 
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software developers should upgrade. As indicated, IIoT architecture has seven layers, Layers 
have vulnerabilities. Due to their outdoor location, IIoT devices in the perception layer are 

subject to physical attacks, which aim to steal or tamper with sensor data. Man-in-the-middle 
and DoS attacks occur in middleware and networks. Privilege escalation and SQL injections 
are examples of traditional computer attacks on businesses and applications. Each layer can 
be attacked in Fig. 4. The lack of IoT communication standards is the key concern [75], Since 

there are no norms, security is difficult. Thus, general security solutions can be difficult to 
create. As determined by S. Garg et al. [76],Hacker’s target software and web servers. In 
addition to connecting devices, servers store a lot of sensitive data. Hackers may benefit from 
inserting malicious code that infects connected devices. Hardware security features include 

hardware-supported software isolation and the hardware root of trust [77]. Using hardware 
to construct isolated units and securely store cryptographic keys is not new and is similar to 
traditional IT studies. Smart cities' IIoT systems' computational and energy constraints make 
hardware security difficult. Due to their inaccurate real-time clocks, some IIoT devices may 
make particular networks unfeasible. These variables can compromise higher-layer security 

[78]. 

 Software presents different issues. Current OSes provide process isolation, so one process 
cannot interfere with another. Memory management unit (MMU) supports isolation. In IIoT, 
there is no centralized OS overseeing all activities, hence maintaining process isolation without 

an MMU is difficult [79]. Even though process isolation is well-known, IIoT devices with 
additional resources require novel ways to provide resource-constrained OS isolation. A 
common issue is access restriction. System resources are protected by OS access control from 
untrusted code. Two are typical concepts for access security. First, give part of the code an OS-
only identity. Second, supply a token that only the process may use. Access control systems 

are difficult to build [73]. Access control, while still relevant to IoT platforms, presents new 
usability issues in system design. An fascinating task is to create an IoT access control system 
that uses our natural understanding about physical objects, while the majority of earlier 
systems use files, processes, and virtual objects [80].  

IoT security also requires authentication. For IoT devices, services, and platforms, 
passwords are the most common authentication method. However, weak passwords have 
permitted enormous botnet DoS attacks, causing alarm [81],[82]. A comprehensive and well-
deployed security method in multiple computing sectors detects rogue network devices. 
Tuning anomaly detectors to emit fewer false positives and negatives requires obtaining 

relevant information from them [83]. The heterogeneity of networked devices makes this 
challenge difficult. Since most of them perform diverse duties, network traces are complicated, 
making “bad” behaviors hard to identify. IIoT devices aim for simpler network dynamics, 
which makes behavior models easier to anticipate and reduces anomaly detector mistakes [84]. 
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Figure 4. An illustration of potential assaults on each tier of an IIoT architecture. 
 

3. Related Work 
Many studies explore IIoT cyber threat hunting methodologies because to researchers' 

interest in its security [85],[86]. The ensemble method's anomaly detection performance is 

better than other machine learning approaches, and its use has increased in past studies. For 
instance, Hasan et al. [87] have evaluated machine learning algorithms for IIoT anomaly 
detection. They evaluated ML models using precision, accuracy, f1-score, and recall. For ANN, 
RF, and DT, the system achieved 99.4% accuracy. The RF model outperforms other methods 

in f1-score and recall. In Ref. [88], Jabbar and his colleague suggested an ensemble technique 
using the Average One-Dependence Estimator (AODE) and RF model to categorize network 
data as threat or normal. The proposed technique has an accuracy of 90.51% and a False Alarm 
Rate (FAR) of 0.14 using Kyoto data. Moreover, AL-Hawawreh et al. [89] have developed an 
ensemble deep learning model to detect IIoT traffic anomalies and malicious behavior. They 

employed TCP/IP data packets to train and validate a feed-forward and AE architecture. The 
model achieves 92.4% and 98.6% accuracy on the UNSW-NB15 and NSL-KDD datasets. Ref. 
shows an ensemble tree model. [90] to forecast IIoT turbofan engine maintenance. Using the 
C-MAPSS dataset, the Gradient Boosted Tree (GBT) technique achieves 93.91% accuracy, 

surpassing the Random Forest (RF) model at 91.78%. RF computes faster and performs better 
than GBT. In addition, Ref. introduces a multi-stage and edge device-based IIoT ensemble 
learning pruning pipeline. [91]. First, the pruned model is used to construct an ensemble 
model, then integer quantization is clustered, and lastly the best prototype cluster is chosen. 
To assess model efficacy, CIFAR-10 and CIFAR-100 datasets are used. The results show that 

the approach provides alternative prediction models. Gu et al. [92] IoT traffic data and key 
characteristics have been our attention. They offer a reinforcement attack detection learning 
model. In reinforcement learning, attack patterns are automatically learned and identified. 
Results demonstrate that dynamically adjusting the proposed model's feature thresholds can 
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increase attack detection by 98.5%. Several ensemble model-based IDS studies exist. 
Kurniawan et al. [93] are developing Synthetic Minority Oversampling Technique. The 

experimental test uses the NSL-KDD dataset with accuracy as a performance factor. The 
technique has a 97% detection rate, 97.02% model accuracy, and 0.16% false alarm rate, 
according to the study. In Ref. [94]Abdel-Basset and colleagues have concentrated on federated 
threat-hunting in industrial cyber-physical systems and developed a model with 92.84% 

accuracy and 91.61% f1-score. Peng Gao et al. [26] proposed Threat Raptor, a computer system 
threat hunting system using OSCTI, and their report indicates sufficient accuracy and 
efficiency for real threat hunting. Liu et al. [95] present a deep IIoT model that detects 
sequential data anomalies. An FL framework is used to train the model on decentralized edge 

devices. Outliers are accurately detected using the Attention Mechanism-based Convolutional 
Neural Network- LSM model. Next, Top-k and compression-based algorithms improved 
communication efficiency. Implementing the proposed approach on four datasets showed that 
the framework can find abnormalities quickly and accurately. Communication overhead is 
reduced by 50% compared to non-gradient compression schemes. Table 2 summarizes recent 

relevant works. 
Table 1. Recent IIoT cyberattack detection investigations. 

Ref. Year ML model Datasets Target 

[87] 2019 DT, RF, SVM, 

ANN  

DS2OS reach a high degree of precision 

[88] 2019 AOED and RF Kyoto data Obtain good accuracy & decrease FAR 

[89] 2018 Auto-encoder NSL-KDD, KDD CUP 

99 

Using feed-forward and AE for high 

accuracy 

[90] 2019 Gradient 

Boosted Trees  

C-MAPSS RF model uses GBT technique for 

increased accuracy and faster 

calculating time. 

[91] 2020 Prune2Edge CIAFR-10, CIFAR100 Propose new IIoT ensemble gaining 

knowledge of pruning pipelines  

using multi-phase and edge devices. 

[92] 2020 Reinforcement 

learning 

IoT attack Increasing assault detection with 

reinforcement learning 

[93] 2020 SMOTE  NSL-KDD Promotes SMOTE for high gains 

[95] 2020 AMCNN-LSTM  Power demand, Space 

shuttle, ECG, and 

Engine 

Makes suggestions a deep model as 

AMCNN-LSTM, doing detect 

anomalies accurately and timely 

[24]  2021 Federated Deep 

learning 

models 

ToN IoT, LITNET-2020 Novel federated deep learning model 

for cyber threat hunting 

[26]  

 

2021 THREATRAPT

OR  

DARPA TC Proposes THREATRAPTOR is a system 

that helps identify threats in computer 

systems. 
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4. DL Techniques 
4.1. Deep Learning for the IIoT 

Deep Machine Learning (DML), or just DL, is crucial to IIoT because of its versatility and 
broad implementation in practically all sectors. We will discuss some of the main themes here. 
DL works for IIoT security in Fig. 5. 

 
Figure 5. An illustration of DL working principle for IIoT Security 

Intelligent manufacturing in the IIoT has many benefits. Creating intelligent manufacturing 
and production processes can be useful [96]. New industrialists use IIoT to boost productivity 
and profits. In IoT-enabled sectors, sensor and smart device data helps smarten production 
[96]. Therefore, modern firms must use intelligent data analysis methodologies. One of the 
most powerful AI algorithms is DL. Through multi-layer information processing, DL 

approaches in smart industries can optimize smart production. Due to its inherent learning, 
pattern recognition, and smart decision-making, DL techniques are helpful. DL's major 
advantage over ML is automatic feature learning. This option eliminates the requirement for 
a feature learning method. [96]. In smart industries, DL approaches can do the above analyses 

well. Next, we cover some popular IIoT DL-based methods. 

4.1.1 Deep Feedforward Neural Networks 

The most basic deep neural network (DNN) advances node connections. Fig. 6 shows the 

DFNN architecture. DNN's multiple hidden layers can model complicated nonlinear relations 
better than shallow networks. This design is popular in all technical domains due to its 
simplicity and robust training procedure [97]. For DFNN training, the most popular gradient 
descent algorithm is preferred. This approach initializes weights randomly and minimizes 

error via gradient descent. The entire learning process requires successive forward and 
backward propagation [98]. Forward propagation uses numerous hidden layers to process 
input to the output layer and compare the computed output to the desired output. For weight 
adjustment, the backward method calculates network parameter error rate of change. This will 

continue until the neural network produces the desired result. 
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Figure 6. A deep feedforward neural network architecture in its common form. 

Let xi be the neural network input and fi be layer i's activation function. For layer i, the 

output can be calculated as 
𝑥𝑖+1=𝑓𝑖(𝑤𝑖𝑥𝑖+𝑏𝑖) 𝑥𝑖+1=𝑓𝑖𝑤𝑖𝑥𝑖+𝑏𝑖                            (1) 
Here, xi+1 becomes the input for the next layer, wi and bi are the essential parameters 

that connect the layer i with prior layer. The settings are adjusted during the backward 

procedure, as illustrated below. 
𝑤𝑛𝑒𝑤=𝑤−𝜂∂𝐸∂𝑊𝑤𝑛𝑒𝑤=𝑤−𝜂∂𝐸∂𝑊                         (2) 
𝑏𝑛𝑒𝑤=𝑏−𝜂∂𝐸∂𝑏𝑏𝑛𝑒𝑤=𝑏−𝜂∂𝐸∂𝑏                               (3) 
Here, w new and b new are The updated w and b parameters. E represents the cost function, 

while η is the learning rate. The cost function of the DL model is determined by the desired 
job, such as classification or regression 

4.1.2 Restricted Boltzmann Machines (RBM) 

Also called stochastic neural networks, RBM. Its ability to learn the input probability 
distribution supervised and unsupervised makes this DL technique popular. Harmonium, 
invented by Paul Smolensky in 1986, was popularized by Hinton in 2002 with novel training 
methods. [99]. Since then, RBM has been used for Prediction, representation learning, and 

dimensionality reduction. RMB-based deep belief network training was popular. The Netflix 
dataset's performance makes RBMs popular for collaborative filtering [100]. RBM extends the 
Boltzmann Machine by restricting unit intra-layer connections. An undirected graphical model 
with visible and hidden layers forms a bipartite graph. Recent studies have introduced several 
RBMs with improved learning algorithms [101]. These varieties include conditional, temporal, 

convolutional, factored, and recurrent RBMs. Different nodes, such as Gaussian, Bernoulli, etc., 
can handle data properties. RBM nodes process information for stochastic decisions. General 
RBM architecture is shown in Fig. 7. 

 
Figure 7. RBM architecture in general. 
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The Gibbs distribution can be used to characterize the joint probability distribution of a typical 
RMB 𝑝(𝑣, ℎ)=1𝑧𝑒−𝐸(𝑣,ℎ)𝑝(𝑣,ℎ)=1𝑧𝑒−𝐸(𝑣,ℎ) 

Here energy function 𝐸 (𝑣, ℎ)𝐸(𝑣,ℎ) can be described as 
𝐸(𝑣,ℎ)=−∑𝑖=1𝑛∑𝑗=1𝑚𝑤𝑖𝑗ℎ𝑗𝑣𝑖−∑𝑗=1𝑚𝑏𝑗𝑣𝑖−∑𝑖=1𝑛𝑐𝑖ℎ𝑖𝐸(𝑣,ℎ)=−∑𝑖=1𝑛∑𝑗=1𝑚𝑤𝑖𝑗ℎ𝑗𝑣𝑖−∑𝑗=1𝑚𝑏𝑗𝑣𝑖
−∑𝑖=1𝑛𝑐𝑖ℎ𝑖                     (4) 

Here m and n represent the number of visible and hidden units. ℎ𝑗ℎ𝑗 and 𝑣𝑗𝑣𝑗 are the states 

of the hidden unit i and visible unit j respectively. 𝑏𝑗𝑏𝑗 and 𝑐𝑗𝑐𝑗 describes real-valued biases 
corresponding to the 𝑗th𝑗th and 𝑖th𝑖th units, respectively. 𝑤𝑖𝑗𝑤𝑖𝑗 are the weights that connect 
visible units with hidden units. Z is the normalizing constant that makes sub-probability 
distributions 1. RBM training algorithm Contrastive Divergence was proposed by Hinton. This 

RMB training technique maximizes training sample probability. Training stabilizes the model 
by minimizing energy by updating its parameters, as shown in Equations (5)– (7). 
Δ𝑤𝑖𝑗=𝜖(〈𝑣𝑖ℎ𝑗〉data−〈𝑣𝑖ℎ𝑗〉model) Δ𝑤𝑖𝑗=𝜖𝑣𝑖ℎ𝑗data−𝑣𝑖ℎ𝑗model               (5) 
Δ𝑏𝑖=𝜖(〈𝑣𝑖〉data−〈𝑣𝑖〉model) Δ𝑏𝑖=𝜖𝑣𝑖data−𝑣𝑖model                                 (6) 
Δ𝐶𝑖=𝜖(〈ℎ𝑗〉data−〈ℎ𝑗〉model) Δ𝐶𝑖=𝜖ℎ𝑗data−ℎ𝑗model                                (7) 

Here, 𝜖𝜖 indicates learning rate, 〈.〉data〈.〉data, and 〈.〉model〈.〉model represent expected 
data and model values, respectively. 

4.1.3 Deep Belief Networks (DBN) 

DBNs have multiple latent variable layers. The hidden properties of input observations are 
indicated by these binary variables. The undirected link between the uppermost two layers 
makes DBN with one layer an RBM [102]. The remaining DBN connections have input-layer-
directed graphs. A DBN model generates samples top-down [103]. Gibbs sampling is used to 

sample the top layer RMB. After then, visible units do top-down ancestral sampling. A general 
DBN model is shown in Fig. 8. 

 
Figure 8. General Deep Belief Network architecture. 

The latent variable model's explaining away effect makes DBN inference uncontrollable. 

Hin proposed a fast and efficient DBN training approach using RBM stacking: the lowest level 
of RBM learns the input data distribution at the start [104]. Next, RBM calculates the higher-
order correlation between the preceding layer's concealed units. Each concealed layer 
undergoes the same process. Next, RBM calculates the higher-order correlation between the 
preceding layer's concealed units. Each concealed layer undergoes the same process. The 

visible joint distribution is modeled by a DBN with Z hidden layers. layer v and hidden 
layer ℎ𝑧ℎ𝑧, here 𝑧=1,2, 3,…,𝑍𝑧=1,2,3,…,𝑍 as described in the following. 

𝑝(𝑣,ℎ1,…,ℎ𝑧)=𝑝(𝑣∣ℎ1)⎛⎝⎜⎜∏𝑧=1𝑧−2𝑝(ℎ𝑧∣ℎ𝑧+1)⎞⎠⎟⎟𝑝(ℎ𝑧−1,ℎ𝑧)𝑝𝑣,ℎ1,…,ℎ𝑧=𝑝𝑣∣ℎ1∏𝑧=

1𝑧−2𝑝ℎ𝑧∣ℎ𝑧+1𝑝ℎ𝑧−1,ℎ𝑧                                     (8) 
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As the first effectively trained deep architecture, Hinton's method launched contemporary 
DL. Logarithmic probability of training data can be considerably boosted by adding NN layers. 

DBN classifiers are used in computer and phone recognition. In speech recognition, DBN pre-
trains DNN, deep convolutional neural network, and others. 

4.1.4 Autoencoders (AE) 

Unsupervised learning with autoencoders trains neural networks to ignore noise and 
represent input more efficiently. Fig. 9 shows AE, a 3-layer neural network. While The hidden 
layer typically has fewer neurons than the input and output layers, which have the same 

number of units. The buried layer compacts input data. RBM employs specific distributions, 
but AE uses deterministic distributions [105]. AE training mainly uses backpropagation. This 
training involves encoding and decoding. The model encodes input into hidden 
representations using weight metrics in the first stage. The model uses weight metrics to 
rebuild identical data from a model that is encoded during decoding. Encoding and decoding 

can be formally explained in Equations (9 and 10). 

 
Figure 9. General Autoencoder architecture 

       During encoding. 
𝑦′=𝑓(𝑤𝑋+𝑏)𝑦′=𝑓(𝑤𝑋+𝑏)                (9) 

X is an input vector, f is an activation function, w and b are tuning parameters, and y is the 
hidden representation. 

      The decoding steps 
𝑋′=𝑓(𝑤′𝑦′+𝑐)𝑋′=𝑓𝑤′𝑦′+𝑐                   (10) 
X represents the output layer's reconstructed input, 𝑤′ represents the transpose of w, and c 

represents the output layer's bias value. 
𝑤𝑛𝑒𝑤=𝑤−𝜂∂𝐸∂𝑊𝑤𝑛𝑒𝑤=𝑤−𝜂∂𝐸∂𝑊        (11) 
𝑏𝑛𝑒𝑤=𝑏−𝜂∂𝐸∂𝑏𝑏𝑛𝑒𝑤=𝑏−𝜂∂𝐸∂𝑏               (12) 

The revised parameters after the current iteration are 𝑤𝑛𝑒𝑤𝑤𝑛𝑒𝑤 and 𝑏𝑛𝑒𝑤𝑏𝑛𝑒𝑤. E is 

output layer reconstruction error. A deep autoencoder (DAE) has many hidden AE layers. 
Multiple layers make AE training tough. [106]. Each DAE layer can be trained as simple AE to 
overcome this issue. The DAE has been used in speech recognition, picture retrieval, document 
encoding for speedier retrieval, and more. Researchers were drawn to AEs' non-generative 
and non-probabilistic properties. 
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4.1.5 Convolutional Neural Network (CNN) 

CNNs are visual-inspired neural networks. LeCun proposed CNNs in 1998 [107] became 
common in DL frameworks when Krizhevsky et al.[108]. ILSVRC-2012 winner with AlexNet 
architecture. This astonishing discovery began a new AI trend as data scientists saw CNN and 

its variants' strong classification skills. CNN algorithms excelled in human recognition systems 
in various applications. Fig. 10 shows CNN's basic architecture. It has numerous convolutional 
and pooling layers and a final fully linked layer. The convolutional layer extracts key 
characteristics from the input image using pixel spatial relationships. Pooling layers reduce 

feature map dimensionality while preserving details about features. Lastly, a completely 
linked layer links the neural network. Using the output layer to achieve the desired outcome. 
CNNs are great for latent spatial image descriptor extraction. Common picture qualities 
include color, contours, edge, textures, strokes, gradient, and orientation. CNNs separate 
images based on these attributes and represent them in layers. Computer vision applications 

like image identification, classification, segmentation, and super-resolution reconstruction 
favored CNNs. Multiple CNN frameworks have been presented to meet real-world 
application needs and high accuracy. Modern architectures like R-CNN and YOLO are 
popular. Naive CNNs use a massive amount region proposal to find an object in an image, 

making them computationally expensive. R-CNN-based selective search selects a region of 
interest (ROI) to address this issue. Redmon et al. [109] YOLO was first proposed in 2016. It's 
faster than R-CNN without sacrificing performance. One CNN glimpse at an object teaches it 
its generic image representation. However, this method has spatial restrictions when detecting 
tiny objects. Other CNN frameworks include AlexNet, LeNet, VGGNet, ResNet, GoogleNet, 

ZFNet, and others [110]. The CNN frameworks have greatly influenced Vision research 
enabled by AI for potential applications. 

 
Figure 10. General CNN architecture. 

4.1.6 Recurrent Neural Network (RNN) 

The connections between nodes in an RNN form a directed graph following a time series. 
[111]. Temporal dynamics are enabled by this characteristic. All inputs and outputs in CNNs 

are independent. Previous data may be needed to predict the following phrase or statement. 
Thus, past data must be remembered. Hidden layers help RNN solve this problem. The hidden 
state that remembers sequence information is the most important RNN feature [111]. RNN's 
memory stores all calculated data. It uses the same parameters for inputs and calculated data. 
To produce an appropriate output, it employs the same parameters for all inputs and jobs on 

all input or hidden layers. This feature simplifies parameters compared to other neural 
networks. The connections between nodes in an RNN create a directed graph following a time 
series [112]. Temporal dynamics are enabled by this characteristic. In typical neural networks, 
inputs and outputs are independent. Previous data may be needed to predict the following 

phrase or statement. Thus, past data must be remembered. Hidden layers help RNN solve this 
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problem. The concealed state that retains sequence data is RNN's most important feature [113]. 
RNN's memory stores all calculated data. To produce an appropriate output, it employs the 

same parameters for all inputs and jobs on all input or hidden layers. This feature simplifies 
parameters compared to other neural networks. RNN architecture is presented in Fig. 11. Here 
is a small illustration of RNN's operation. Consider a DNN with 1 input, Three concealed, one 
output layer. Each layer will have unique weights and biases. Let's suppose hidden layer 

weights and biases are 𝑤1, 𝑤2, 𝑤3𝑤1, 𝑤2, 𝑤3 and 𝑏1, 𝑏2, 𝑏3𝑏1, 𝑏2, 𝑏3. These layers do not 
remember the prior output; therefore, they are independent. RNN turns independent 
activations into dependent ones by giving each layer the same biases and weights. It reduces 
complexity by memorizing previous outputs as input to the next hidden layer. These 3 layers 

can be combined into a single recurrent layer with identical weights and biases for all hidden 
layers. The following equation calculates the current state. 
ℎ𝑡=𝑓 (ℎ𝑡−1, 𝑥𝑡) ℎ𝑡=𝑓ℎ𝑡−1, 𝑥𝑡              (13) 

 
Figure 11. RNN architecture in general. 

Here ℎ𝑡ℎ𝑡 represents the current state, ℎ𝑡−1ℎ𝑡−1 is the previous state and 𝑥𝑡𝑥𝑡 is the neural 

network input. 
The following expression applies a hyperbolic tangent (tanh) activation function. 
ℎ𝑡=tanh(𝑤ℎℎℎ𝑡−1+𝑤𝑥ℎ𝑥𝑡) ℎ𝑡=tanh𝑤ℎℎℎ𝑡−1+𝑤𝑥ℎ𝑥𝑡               (14) 

Here 𝑤ℎℎ𝑤ℎℎ is Weight of current neuron and input neuron weight (𝑤𝑥ℎ𝑤𝑥ℎ).  

You can calculate output with this equation. 
𝑦𝑡=𝑤ℎ𝑦ℎ𝑡𝑦𝑡=𝑤ℎ𝑦ℎ𝑡                                                                   (15) 

4.1.7 Generative Adversarial Networks (GAN) 

GANs use two neural networks to produce artificial data that can be used in place of real 
data. GANs are commonly utilized in speech, picture, and video generation [114]. GAN was 
introduced by Ian Goodfellow at Montreal University in 2014. Facebook AI research director 
Yann LeCun named adversarial training the most promising ML topic in the previous decade. 

Because they can replicate any data distribution, GANs have many applications [115]. We can 
teach these networks to generate worlds like ours in speech, music, image, video, etc. 
Essentially, these networks are robot artists with astounding output. Deepfakes—GAN-
generated fake media—is another technology. Gans have two models. The first  

A generator model generates data similar to the required data. The generator resembles a 

human art forger who forges art. Discriminator is the second model. The model verifies if input 
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data is from the original dataset or forged. Discriminators are like art experts who evaluate 
works for authenticity. GAN operation is shown in Fig. 12. GAN is easy to grasp utilizing 

universal approximators like ANN. Generators can be modeled using a neural network 𝐺 (𝑛, 
𝜃1). 𝐺𝑛, 𝜃1. Its major task is mapping noise variables n to data space x. Another option is to 
simulate the discriminator using a second neural network (𝐷(𝑥, 𝜃2) 𝐷𝑥, 𝜃2). It returns a 0–1 
data authenticity probability. (0,1). In both cases, 𝜃𝑖𝜃𝑖 represents neural network weights. 

 
Figure 12. General Generative Adversarial Network architecture. 

Thus, the discriminator trains to appropriately categorize input data, updating neural 
network weights to optimize the chance that any genuine data input x belongs to a real dataset. 
The generator is trained to produce realistic data. This also means that generator weights are 

tweaked to maximize the likelihood that each bogus image is classified as being from the 
original dataset. The generator and discriminator will hit a plateau after numerous training 
cycles. The generator provides realistic and artificial data, as well as the discriminator cannot 
distinguish between them. Generator and discriminator compete to optimize opposite loss 
functions during training [116]. The generator strives to maximize its likelihood of real output, 

whereas the discriminator tries to minimize it. 

5. KEY DIFFERENCES IN DL-IIOT 
We have highlighted the necessity of DL in numerous businesses, but implementing DL 

and getting usable and trustworthy results is difficult. It requires domain knowledge, 
statistical analysis, addressing issues and obtaining data-insight. Here are some of the biggest 
issues of DL-assisted IIoT networks 

 
5.1. Complexity 

A major challenge with DL models is complexity, which requires extra effort to fix 

[117],[118]. Complex models and big industrial datasets cause DL performance issues 
including the time-consuming training phase and the computationally intensive inference 
phase. Because IIoT devices are compact and mobile, they must offload intensive computations 
due to limited processing power, memory, and battery life. It might not always be feasible for 

a variety of reasons. Critical data should not be sent online for security. High transfer latency 
from cloud offloading of data and computations might not be appropriate for many time-
critical real-time applications. Thus, effective DL algorithms that analyze data locally on IoT 
devices are crucial [119]. DL integration in IIoT sensors and devices has been attempted in 
recent years. Most of these work developed lightweight DL inference engines [120-123] , 

Libraries, frameworks, operating systems, etc., that can run on low-resource hardware such 
ARM Cortex-M MCUs and RISC-V-based PULP [124],[28]. DL models must be efficient, 
precise, and resource-efficient, as these efforts are still young. To efficiently learn industrial 
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data features, a tensor train deep-compression (TTDC) model can address complexity [125]. 
This speeds up the DL model by compressing numerous parameters. DL's high computational 

complexity can be addressed by splitting models across IIoT and cloud systems [126] or to trim 
DL models for memory and computational savings [127]. How to split or prune models 
optimally depends on the model cut and accuracy needs, thus it's still unknown. Finally, 
accelerator hardware like DianNao, DaDianNao, and Eyeriss [128,129][130-139] are designed 

to maximize CNN and DNN performance, enabling native IoT DL applications. Because of the 
particular hardware and application, this strategy is not cost-effective and limited to a few 
crucial circumstances. Additionally, these strategies may not function as well with RNNs or 
GANs 

 
5.2. Data Availability 

industrial applications, overfitting affects model accuracy and efficiency due to a shortage 

of valuable training samples. The availability of valuable data raises many concerns. IIoT 
sensors and gadgets automatically record data. The same sensors may not capture the same 
data on the same instruments or devices due to non-uniform calibration, device age, or 
environment. Sensor data may also be lost due due to transmission-and-acquisition noise or 

inadequate connection. IIoT devices may not collect enough data for predictive maintenance. 
For instance, failure data is scarce, making it hard for DL algorithms to understand [140]. Thus, 
failure data may be useless. Thus, contextual data must be collected systematically, such as by 
considering calibration and aging [141]. 

 
5.3. Algorithm Selection 

Many IIoT DL algorithms are popular and widely available [142]. These algorithms can 

function in any generic environment, however those for industrial applications should be 
chosen based on industry needs. Knowing which DL algorithm works best in a business is 
crucial [143]. Choosing the wrong DL algorithm might result in junk output, wasting time, 
effort, and money. Choosing a DL algorithm for an industrial setting is difficult. The IIoT has 

tagged data, making supervised learning algorithms better. If data is sparse and unlabeled, 
unsupervised DL methods are best. Therefore, the initial step is to identify DL algorithms, 
whether supervised or unsupervised suit the industrial setup better. Comparing the 
computational cost, complexity, and dependability of DL algorithms before applying them to 
an IIoT application is also necessary. CNN, RNN, and DBN DL algorithms require enormous 

training data and expensive hardware. Due of these issues, novel DL algorithms including 
deep transfer learning, deep reinforcement learning, and hybrid DL algorithms must be 
researched. 

 
5.4. Data Selection 

A DL algorithm must be intimately associated with training data to avoid “garbage in, 
garbage out”  [144]. Avoiding selective bias and choosing data that accurately portrays the 

industrial process is crucial. Data selection relies on industry, data source availability, cost, 
and convenience. Each application has its own ideal data space, therefore reducing 
unnecessary data may be more efficient. By filtering data by specified criteria, analysts can 
compress it and save on computational, storage, and bandwidth expenses. DL models often 

learn on unprocessed inputs through multiple hidden layers to attain the desired performance 
at the cost of long training [145]. Thus, standard DL-based IIoT data-selection techniques are 
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costly. Thus, core-set selection and active learning can be researched to help DL algorithms 
choose the most useful training examples. 

 
5.5. Data Preprocessing 

Converting raw data with Incomplete data, anomalies, and insignificant entries in a 
statistical form and DL algorithms can understand is the next critical step after picking the data 
[146], [147]. This step involves parsing, cleaning, and preparing data, which may include 
transforming raw data into numbers, scaling features to prevent dominance, and eliminating 

or replacing missing entries. IIoT architectures should contain automatic processes for 
iteratively cleansing data to enable smarter DL [148-153]. Data preprocessing increases data 
quality in DL-based IIoT networks to extract useful insights. 

 
5.6. Data Labeling 

We know that supervised DL algorithms are the easiest and best for IIoT. Unsupervised DL 
algorithms are harder to develop and may require many failed iterations and a protracted 

training procedure [154]. However, supervised DL algorithm data labeling is difficult and 
cannot be outsourced for complex tasks. Medical picture labeling and classification for 
diagnosis requires domain experts like doctors. Specialized medical specialists consider 
picture classification time-consuming. [155]. Data labeling is being reduced. Important 
progress toward this goal is SenseGAN [156], which considerably reduces labeled data using 

GANs. Another GAN-based labeling method is data augmentation [157]. Other DL problems 
in smart industrial applications include managing model and data versions, recreating models, 
etc. DL evolves, therefore its learning capacities change [158,159]. Should the group discover 
that the most recent models, features, and dataset are not properly described, integrating them 

into a DL setup might be a headache. 
 

6. Conclusion 
In order to link physical things to the internet for a variety of future industrial applications, 
IIoT is the most crucial component. Because IoT devices may turn items from application areas 
into internet hosts, their adoption has expanded dramatically over the previous ten years. 
However, because of security flaws, user privacy and security pose a significant difficulty. IoT 

security needs to be developed and looked into as a result. Deep learning-based IIoT networks 
and systems employ the IDS security mechanism. Next, we went over the various applications 
of DL-based IIoT, such as asset tracking, smart meters, smart grids, remote healthcare 
monitoring, predictive maintenance, and the mining, transportation, telecom, and agricultural 

sectors. We also discussed some of the difficulties with DL-based IIoT, such as the use of DL 
in IIOT security methods. Lastly, we used survey articles to determine the future paths of DL-
based IIoT. The survey addressed the main flaws in the previous research and solved these 
issues by adding more data. The majority of surveys now in use don't provide a thorough 
explanation of typical IIoT design. This paper outlined the essential enabling technologies and 

protocols for the IIoT as well as its comprehensive seven-layer architecture. This survey 
covered mathematical underpinnings, reference designs, and the theories of popular DL 
algorithms. The absence of software and hardware implementation platform consideration in 
the current studies is one of their main flaws. A thorough explanation of hardware and 

software deployment frameworks is provided in the context of DL and IIoT in order to 
overcome this problem. Several possible use cases of DL technologies for the IIoT are described 
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in order to assess the efficacy of DL for IIoT. In conclusion, this survey concludes by outlining 
the primary obstacles present in current DL-based IIoT systems. 
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