An Autonomous AI-Vision Robotic System with Mecanum Wheels for Real-Time Object Sorting and Navigation

Authors

  • Badri Mohapatra AISSMS IOIT, INDIA
  • Snehal Nalge AISSMS IOIT, INDIA
  • Tejas Sonale AISSMS IOIT, INDIA

Keywords:

AI vision, , Mecanum wheels, Robotic arm, Sensor fusion, Autonomous navigation, Industrial automation

Abstract

This study presents an autonomous robotic system combining AI vision, a Mecanum wheel-based mobile platform, and a servo-driven robotic arm for real-time object sorting and navigation in dynamic environments. The system employs an Arduino-based control framework with multi-sensor fusion (ultrasonic, infrared, and Bluetooth) to achieve obstacle avoidance, line following, and voice-command responsiveness. A novel color-based object classification algorithm is implemented, achieving a sorting accuracy of 94.2% for standardized packages in experimental trials. The Mecanum wheels enable omnidirectional mobility, reducing navigation time by 38% compared to conventional differential drives in constrained spaces. Experimental results demonstrate the system’s efficacy in smart manufacturing and automated logistics, with potential applications in warehousing and healthcare automation. This work bridges critical gaps in flexible, low-cost robotics and provides a scalable framework for future extensions, such as machine learning-based shape-agnostic grasping.

References

Flores-García, E., Jeong, Y., Liu, S., Wiktorsson, M., & Wang, L. (2023). Enabling industrial internet of things-based digital servitization in smart production logistics. International journal of production research, 61(12), 3884-3909.

Gill, S. S., Golec, M., Hu, J., Xu, M., Du, J., Wu, H., ... & Uhlig, S. (2025). Edge AI: A taxonomy, systematic review and future directions. Cluster Computing, 28(1), 18-33.

Iqbal, J., Islam, R. U., & Khan, H. (2012). Modeling and analysis of a 6 DOF robotic arm manipulator. Canadian Journal on Electrical and Electronics Engineering, 3(6), 300-306.

Jiang, Y., Li, W., Zhang, J., Li, F., & Wu, Z. (2023). YOLOv4‐dense: A smaller and faster YOLOv4 for real‐time edge‐device based object detection in traffic scene. IET Image Processing, 17(2), 570-580.

Lee, G., Jung, S. H., & Han, D. (2019). An adaptive sensor fusion framework for pedestrian indoor navigation in dynamic environments. IEEE Transactions on Mobile Computing, 20(2), 320-336.

Martin, J. F., & Chiang, L. (2002). Low cost vision system for an educational platform in artificial intelligence and robotics. Computer Applications in Engineering Education, 10(4), 238-248.

Mehmood, A., & Ali, A. (2021). Application of deep reinforcement learning for tracking control of 3WD omnidirectional mobile robot. Information Technology and Control, 50(3), 507-521.

Mohammed Ali, H., Hashim, Y., & A AL-Sakkal, G. (2022). Design and implementation of Arduino based robotic arm. International Journal of Electrical and Computer Engineering, 12(2), 1411-1411.

Mohapatra, B. N., & Mohapatra, R. K. (2020). Design of an automated agricultural robot and its prime issues.

Mohapatra, B. N., Husain, K. U. J., & Mohapatra, R. K. (2019). Implementation of a line follower robot using microcontroller. International journal of innovative technology and exploring engineering, 9(2), 2155-2158.

Moreno-Caireta, I., Celaya, E., & Ros, L. (2021). Model predictive control for a Mecanum-wheeled robot navigating among obstacles. IFAC-PapersOnLine, 54(6), 119-125.

Wu, M., Yeong, C. F., Su, E. L. M., Holderbaum, W., & Yang, C. (2023). A review on energy efficiency in autonomous mobile robots. Robotic Intelligence and Automation, 43(6), 648-668.

Downloads

Published

2025-08-06

How to Cite

[1]
“An Autonomous AI-Vision Robotic System with Mecanum Wheels for Real-Time Object Sorting and Navigation”, Int. J. Inform. Inf. Sys. and Comp. Eng., vol. 6, no. 2, pp. 269–276, Aug. 2025, Accessed: Nov. 15, 2025. [Online]. Available: https://ojs.unikom.ac.id/index.php/injiiscom/article/view/15961