Temperature and Humidity measurement of Baby Incubator using PSOC CY8CKIT-062-WiFi-BT
Keywords:
SYHS-220r, LM35, CY8CKIT-062-WiFi-BT PSoCmicrocontroller, UARTAbstract
The present work deals with the development of a temperature and humidity monitoring system designed specifically for neonatal intensive care units (NICUs), which serve as dedicated spaces for premature or fragile newborns. These units aim to replicate the conditions of a mother's womb, essential for the survival and growth of vulnerable infants. Maintaining proper thermoregulation is critical, as failure to do so remains a significant, yet preventable, cause of mortality among neonates. For premature and delicate infants, consistent body temperature is vital for optimal development. This project focuses on monitoring and regulating the temperature and humidity levels within the NICU, as these factors play a key role in the well-being of preterm infants. The system utilizes a set of specialized sensors, with the collected analog signals processed through a peripheral interface controller to ensure efficient monitoring.
References
Abdulrazzak, I. A., Bierk, H., & Aday, L. A. (2018). Humidity and temperature monitoring. Int. J. Eng. Technol, 7(4), 5174-5177.
Aji, N., & Joelianto, E. (2021, August). IoT-based temperature and relative humidity monitoring system using simple network management protocol. In 2021 International Conference on Instrumentation, Control, and Automation (ICA) (pp. 174-179). IEEE.
Barik, L. (2019). IoT based temperature and humidity controlling using Arduino and Raspberry Pi. International Journal of Advanced Computer Science and Applications, 10(9).
Costa, J. L., Freire, C. S., Silva, B. A., Cursino, M. P., Oliveira, R., Pereira, A. M., & Silva, F. L. (2009, September). Humidity control system in newborn incubator. In Proceedings of the XIX Ime-ko World Congress Fundamental and Applied Metrology (pp. 1760-1764).
Currie, E. H. (2021). Mixed-Signal Embedded Systems Design. Springer International Publishing.
Danladi, M. S., & Baykara, M. (2022). Design and implementation of temperature and humidity monitoring system using LPWAN technology. Ingénierie des systèmes d'information, 27(4), 521.
Dive, K., & Kulkarni, G. (2013). Design of embedded device for incubator for the monitoring of infants. Int. Journal of Advanced Research in Computer Science and Software Engineering, 3(1), 541-546.
Eisele, M., Ebert, D., Huth, C., & Zeller, A. (2023, July). Fuzzing embedded systems using debug interfaces. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (pp. 1031-1042).
Hitu Bansal, D. L. M., & Gupta, A. (2015). Controlling of temperature and humidity for an infant incubator using microcontroller. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 4(6), 4975-4982.
Instruments, T. (2017). LM35 Precision Centigrade Temperature Sensors datasheet, August, 1999. Revised Dec.
Joshi, N. S., Kamat, R. K., & Gaikwad, P. K. (2013). Development of wireless monitoring system for neonatal intensive care unit. International Journal of Advanced Computer Research, 3(3), 106.
Joshi, N., Kamat, R., & Gaikwad, P. (2015). Development Of Temperature Tracker For Neonatal Intensive Care Unit.
Kuria, K. P., Robinson, O. O., & Gabriel, M. M. (2020). Monitoring temperature and humidity using Arduino Nano and Module-DHT11 sensor with real time DS3231 data logger and LCD display.
Lambat, M. M., & Wagaj, M. S. Health Monitoring System Using PSoC.
Lyon, A. J., Pikaar, M. E., Badger, P., & McIntosh, N. (1997). Temperature control in very low birthweight infants during first five days of life. Archives of Disease in Childhood-Fetal and Neonatal Edition, 76(1), F47-F50.
Patil, D. S., Aher, A. S., & Nahata, A. S. (2016). PIC microcontroller based efficient baby incubator. Int J Mod Trends Eng Res. www. ijmter. com e-ISSN, (2349-9745).
Suruthi, M., & Suma, S. (2015). Microcontroller based baby incubator using sensors. International Journal of Innovative Research in Science, Engineering and Technology, 4(12), 12037-12044.
Thirrunavukkarasu R. R., Deepika M., Dharshini R., Infant Shiny A. and Karthiga S. (2023). Smart Farming for Efficient Crop Growth. ACS Journal for Science and Engineering, 3(2).
Tilekar, S. K., Mane-Deshmukh, P. V., Ladgaonkar, B. P., & Chavan, S. V. (2017). Synthesis of reconfigurable embedded system to measure temperature compensated dissolved oxygen concentration. International Journal, 7(5).
Tilekar, S. K., Tambe, A., Shiakh, S. S., Patil, S. N., Mane-Deshmukh, P. V., Pathan, S. C., & Ladgaonkar, B. P. (2014). Analog Mixed Signal Based SoC for Measurement of AC Electrical Conductivity of Water. International Journal of Scientific and Engineering Research, 5(8), 474-478.
Vani, P. D., & Rao, K. R. (2016). Measurement and monitoring of soil moisture using cloud IoT and android system. Indian Journal of Science and Technology, 9(31), 1-8.
Wang, A. (2021). Bluetooth wireless temperature and humidity detection system based on STM32. In E3S Web of Conferences (Vol. 284, p. 04006). EDP Sciences.
Yang, J., Yi, H., Li, Z., & Ren, C. (2023, July). Automatic calibration system of thermo-hygrometers. In Journal of Physics: Conference Series (Vol. 2554, No. 1, p. 012002). IOP Publishing.















