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A B S T R A C T S  A R T I C L E   I N F O 

This article focuses on using deep learning methods to 
predict ransomware from hybrid analysis samples. 
Other similar research is analysed to understand the 
common methods of detection used to predict 
ransomware using various methods of analysis. By 
using this knowledge an experiment is created which 
tests the performance of a model created from hybrid 
analysis of ransomware samples. The training dataset 
used is made up of more than five hundred samples 
containing 38 different ransomware families and benign 
Windows program samples. The resultant model was 
then tested against a dataset include ransomware 
families not represented in the training dataset, which 
showed a decrease in performance. These results were 
then compared to other research’s reported results 
which highlights potential issues in the way artificial 
intelligence models are tested and reported. The paper 
then proposes a focus on more complex methods of 
prediction, and other potential methods to ensure the 
models created are externally as effective as they report. 
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1. INTRODUCTION 

Ransomware is a ubiquitous threat in 
the modern digital landscape.  Stories 
about ransomware attacks disabling 
critical infrastructure or important 
business processes have grown more 
common with each passing year. To 
combat this growing threat many have 
looked to automated detection systems 
powered by Artificial Intelligence (AI) to 
anticipate and react before irreparable 
damage has been caused. To that end, this 
paper tests a commonly proposed 
method of detection using an artificial 
neural network (ANN) trained on 
ransomware activity.  

Other research has shown the 
potential of artificial intelligence when it 
comes to predicting ransomware activity 
if properly configured, however research 
into this topic often report training 
metrics with high confidence values. 
While this can imply that a model is 
efficient, it can also be a sign that the 
model may have negatives related to the 
data gathered and the methods used. 
Alongside this, the aspect of model decay 
can be overlooked in research. This paper 
seeks to replicate the effects of this 
against the commonly proposed models 
by creating a testing dataset that contains 
new ransomware samples not 
represented in the training dataset. 

The objective of this research is to test 
a deep learning model trained on 
ransomware data gathered from hybrid 
analysis and compare to other studies to 
see if there is any difference when 
accounting for ransomware not 
represented in the dataset to test the 
effects of model drift. By understanding 
showcasing the effect of drift on a model, 
and the ways to potentially reduce it 

future research can better understand 
and account for it. 

2. METHODOLOGY 
 

2.1. Concepts and Related Work 

Ransomware is a specific type of 
malware, and the most common 
ransomware and the one most often 
mentioned in related literature is that of 
cryptographic ransomware. This type of 
ransomware operates by infiltrating a 
system, getting access to higher level 
commands on the network or device by 
various means, and then encrypting data 
in a way that forces the victim to pay a 
ransom for a decryption key or to initiate 
a system recovery plan. 

When it comes to detecting 
ransomware there are a couple different 
methods that have been used. Some 
methods such as those used by Hossain et 
al. (2022), Ghazi and Raghava (2022), and 
Almousa et al. (2021) operated based on 
network communication, focusing on 
detecting anomalous traffic on a network 
to identify ransomware. This method 
relies on the ransomware operating in 
non-standard ways once it infiltrates a 
network, which can lead to issues in 
classification if the network traffic 
generated by the ransomware is different 
from what is represented in the dataset. 

Another method of detection focuses 
on detecting high levels of Shannon 
entropy which is the amount of 
uncertainty in the potential states of a 
piece of data, specifically applied to 
encrypted files and their predicted 
decrypted outputs. This requires analysis 
of encrypted files so the trained model 
can identify and stop the potential 
ransomware associated with this feature. 
Hirano and Kobayashi (2019) and Hsu et 
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al. (2021) used Shannon entropy with 
other features for their decision-making 
models. Shannon entropy is useful for 
detecting files with unreliable encryption, 
however other studies such as 
Moussaileb et al. (2021) mention that 
images and other complex files can be 
falsely identified with this method. 

Other features commonly used in 
detection are API calls considered related 
to ransomware activity as used by Anand 
et al. (2022), a combination of behaviours 
as outlined by Alzahrani et al. (2019), or 
via detecting changes in disk and 
memory activity as tested by Melaragno 
and Casey (2022).  

There are also different methods of 
ransomware analysis which is used to 
generate the datasets used in training and 
testing for AI. Static analysis focuses on 
parsing the code contained in the 
program and returns derived inferences. 
This method is easy to execute and 
reduces the complexity of analysis 
needed for real world testing. Sharma 
and Sangal (2023) focused on static 
feature analysis for their work in 
detecting Android malware. 

Dynamic analysis returns 
information gathered not by parsing the 
program’s code, but rather by storing and 
analysing the actions taken in a 
sandboxed operating system. This 
returns information generated from 
runtime activity which offers a more in-
depth data of ransomware activity. In 
exchange, this method requires a 
sandbox for testing and more time to 
generate the data used in prediction. 
Sukul et al. (2022) used dynamic analysis 
to gather runtime data of common 
ransomware samples for dataset creation 
and prediction.  

Finally, there is hybrid analysis 
which focuses on gathering information 
on ransomware using a combination of 
static and dynamic analysis getting the 
information from both, at the cost of more 
time to generate the necessary data for 
prediction. Iqbal et al. (2022) used hybrid 
analysis techniques to gather static 
program data alongside active capture of 
Android devices screens to detect 
threatening messages to predict 
ransomware. 

General reviews into the topic have 
noticed some major aspects of research 
that are problematic if unaddressed. 
Davies et al. (2021) specifically mentioned 
that some of the current features used in 
detection like Shannon entropy being 
questioned in other literature for 
effectiveness. Oz et al. (2022) focuses on 
the how much of the variance is covered 
in the theoretical defensive solutions, and 
how models overly focused on one aspect 
can be overcome by designing 
ransomware that avoids using the 
methods being detected. Razaulla et al. 
(2023) specifically mentions the issue of 
concept drift in relation to prediction 
accuracy against topics that undergo 
change over time. 

Based on the information gathered, 
the design of the experiment will use 
hybrid analysis of multiple factors to 
limit overfitting based on a single 
dimension. The training and testing set 
are designed to represent an external 
environment with ransomware samples 
not represented in training being used in 
the testing dataset. The results will be 
compared against other reported values 
for similar models to see if there is any 
clear differences. 

2.2. Gathering samples for dataset 
creation 
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To create the dataset used for training 
and testing, hybrid analysis of 
ransomware and benign samples were 
necessary. Samples were gathered from 
malware repositories such as VX-
Underground and Malware Bazaar, 
specifically targeting recent ransomware 
families such as REvil, Akira, alongside 
historic ransomware samples such as 
Locky. From this process, five hundred 
and eighty-three samples were gathered 
from thirty-nine different families. Sixty 
benign samples made up of common 
Windows productivity software. 

2.3. Analysing the collected samples 

To analyse these samples CAPEv2 
(O’Reilly, 2024), a Cuckoo Sandbox fork, 
was used for hybrid analysis. This was 
done within an Ubuntu 22.04 LTS virtual 
machine hosted on a Windows 11 
desktop. The desktop’s specifications are 
as follows: an AMD Ryzen 9 5900x 12-
core processor, sixty-four gigabytes of 
Random Access Memory (RAM), an 
Nvidia GeForce 3080 graphics processing 
unit, and a terabyte of solid-state storage. 
The virtual machine instance had thirty-
two gigabytes of RAM, twelve 
virtualized processor cores, and six 
hundred gigabytes of storage. 

 Using CAPEv2’s default analysis 
toolset, each ransomware produced a 
dynamic analysis log which contained 
the actions taken by the software sample 
executed in the sandbox. CAPEv2 also 
did static analysis on the samples tested, 
which it derived the signatures detected 
in the sample. Further information 
produced by this analysis includes a list 
of APIs used, the user accounts used, 
registry keys accessed, and YARA 
detections from the systems memory. A 
JavaScript Object Notation (JSON) report 

was then output for each sample 
processed. 

2.4. Deriving features from the JSON 
reports 

Taking the JSON reports, Python 3 
was used to parse and select features 
related to prediction. These features 
include the Application Programming 
Interface (API) calls executed during the 
runtime, the registry keys accessed, the 
signatures recognized during static 
analysis, the number of YARA detections, 
and operations executed. API calls were 
divided by the API called and the number 
of calls executed during analysis. The 
signatures and registry keys were 
transformed into nominal values from 
strings using WEKA (Frank, 2016) 3.9.6’s 
StringToWordVector method. 

This created a dataset with one 
thousand and seventeen features, 
including the value of “safe or unsafe” 
which represented safe as a value of zero 
and unsafe as a value of one. 

While the prior methods created a 
dataset for training, to test the 
performance of the model against drift a 
separate dataset for testing containing a 
mixture of ransomware families 
represented during training, and newer 
ransomware not included in training 
such as Blacksuit. This testing dataset 
was created using the same methods 
prior. Due to the use of 
StringToWordVector from WEKA, some 
signatures represented in the testing set 
were not included in the training set. This 
was accounted for in testing via 
manipulating the features available for 
decision making to represent real-world 
scenarios where the entirety of the data 
may not be available.  

2.5. Metrics used for analysis 
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To analyze the performance of the 

models during testing the following 

metrics were used. These values are 

derived from a confusion matrix which is 

made up of four values: true positive (TP) 

which is where the sample is ransomware 

and correctly identified as such, true 

negative (TN) which is where the sample 

is benign and correctly identified as such, 

false positive (FP) where the sample is 

incorrectly identified as ransomware, and 

false negative (FN) where a sample of 

ransomware is incorrectly identified as 

benign. 

 Accuracy (ACC) is a measure of 

how often the model correctly 

identifies TP and TN compared to 

the number of total classifications. 

The closer to 1, the better the 

model performed. 

 Recall (REC) is a measure of how 

often ransomware is correctly 

identified compared to the amount 

of ransomware in the dataset. The 

closer to one, the better the model 

detects ransomware. 

 Precision (PREC) is a measure of 

how often a positive label is true, 

compared to false positives. The 

closer to one, the better the 

program is at avoiding false 

positives. 

 True Negative Rate is a measure of 

how often a negative label is true, 

compared to the number of false 

negatives. The closer to one, the 

better the model is at correctly 

identifying benign samples. 

 F-Score (F1) is a measurement of 

harmony between recall and 

precision, with a higher score 

meaning a model is less likely to 

misclassify a sample. 

 Matthew’s Correlation Coefficient 

(MCC) is a measurement of the 

total model and shows how 

reliable the predictions are. MCC 

works better with imbalanced 

data. The lower the number, the 

higher the chances are that guesses 

are random.  

ACC = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                    (1) 

REC = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (2) 

PREC = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                               (3) 

TNR = 
𝑇𝑁

𝑇𝑁+𝐹𝑁
                                (4) 

F1 = 
(2∗(

𝑇𝑃

𝑇𝑃+𝐹𝑃
)∗(

𝑇𝑃

𝑇𝑃+𝐹𝑁
)

(
𝑇𝑃

𝑇𝑃+𝐹𝑃
)+(

𝑇𝑃

𝑇𝑃+𝐹𝑁
)

                   (6) 

MCC  = 
𝑇𝑁∗𝑇𝑃−𝐹𝑁∗𝐹𝑃

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                

(7) 

2.6. Creating the Model 

To create the models used for testing, 

Conda and PyTorch (Ansel, 2024) were 

used to generate a feedforward artificial 

neural network (ANN) with three layers. 

The model’s predictive features were 

optimized using Adam, a popular 

stochastic optimizer for deep learning. 

This model was trained using five-fold 

cross-validation optimizing around 

reducing loss and high MCC 

performance. 
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3. RESULTS AND DISCUSSION 

3.1. Procedure 

After creating the model as outlined 
in the prior section, the model’s training 
metrics were generated using a 
combination of “NumPy”, “scikit-learn”, 
“matplotlib”, and “pandas” packages. 
The performance during training was 
high, with PREC and TNR returning 
values of 1.0, and other metrics returning 
values in the high .9 range. When 
graphed to show the Receiver Operating 
Characteristics (see figure 1), the model 
covers at least ninety percent of results 
with proper classification.  While these 
metrics potentially show a powerful 
model, these high values suggest that the 
model may have overfit during training. 
This means that the model believes that it 
can accurately predict all values in the 
training dataset, however it could have 

external validity issues and could 
misidentify samples not included during 
training. 

 To test this, the testing set which 
contained a mixture of included and 
excluded ransomware family samples 
was used to test the performance of the 
model. When tested, the model achieved 
a value of 0.862 in accuracy, and a true 
negative rate of 0.913. When the ROC was 
graphed (see figure 2), it still showed that 
eighty percent of results were correctly 
identified. However, the F1 and MCC 
lowered to 0.666 and 0.58 respectively. 
This means that while the model could 
correctly predict the results, there was a 
moderate chance that the model could 
not determine the result with confidence 
and misidentified samples because of it. 
See figure 3 for a graphical comparison of 
the training and testing performance of 
the ANN.

 

 

Fig. 1. The ROC graph generated based on the ANN model’s performance in 
training. 

https://doi.org/10.34010/injiiscom.v7i1.14803


Veach and Abualkibash. Testing Deep Learning Methods to Predict Ransomware...| 38 

 

 

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803  
p-ISSN 2810-0670 e-ISSN 2775-5584 

 

Fig. 2. The ROC graph generated based on the ANN model’s performance in 
testing.

 

 

Fig. 3. Bar graph of the ANN model’s metrics from training and testing. 
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Table 1. Testing Results vs Other Reported Results 

 

 

3.2. Analysis of Results 

The results gathered from the testing 
shows some major limitations that need 
to be fixed to increase performance. First, 
the training dataset is less effective when 
it comes to identifying ransowmare not 
represented in training, this means that 
the features used in prediction were 
inefficient when it comes to external 
validity. To fix this, the features used in 
training and testing should be reduced or 
re-factored to increase the models 
resiliance when predicitng new 
ransomware. Alongside this, current 
predictions are being done using a bag of 
words method, other methods such as 
term frequency inverse frequency 

detection (TF-IDF) could offer benefits to 
the performance and resiliancy of the 
model used. 

The model’s performance in training 
had similar results to other literature in 
the field, which often use similar 
methodology to test their models.  

Nurnoby and El-Alfy (2019) created a 
deep neural network similar to the one 
constructed in this experiment, however 
they also used other features for decision-
making such as the files deleted. They 
reported similar to this articles training 
metrics, however their ransomware was 
older and the perforamnce of their work 
was not tested on something new. 
Sharma, Krishna, and Kumar (2020)  did 
something similar but tested against 

Model 

Tested 

Accuracy Precision Recall True 

Negative 

Rate 

F-Score MCC 

 

ANN 

(Training) 

0.995 1.0 .95 1.0 0.973 0.971 

ANN 

(Testing) 

.862 .666 0.666 0.913 0.666 0.580 

DNN by 

Nurnoby 

and El-Alfy 

(2019) 

.972 .980 .952 N/A .966 N/A 

ANN by 

Sharma, 

Krishna and 

Kumar 

(2020) 

0.992 0.997 0.989 N/A 0.993 N/A 

RF by 

Masum et 

al. (2022) 

0.99 0.99 0.97 N/A 0.97 N/A 
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specifically android operating systems. 
Their dataset had 1045 features for 
prediction and preformed comparably to 
this papers ANN model during training. 
Masum et al. (2022) tested a less complex 
ensemble classifier, specifically random 
forest, and reported almost ones in their 
metrics. 

This could mean that other works 
could suffer a similar decrease in efficacy 
when testing against samples not 
included in training. While the other 
models differing features may offer some 
explanation for the difference in 
performance, this could be caused by 
insufficient datasets that are designed for 
internal validity rather than representing 
real world scenarios as explained by Oz 
and Aris (2022) in their review. 

4. Future Work 

For future work into this detecting 
ransomware with AI, a major focus 
should be on ensuring external validity 
with the models created. Currently many 
studies report high performance values 
during their training and testing phase, 
however the datasets used are often using 
samples from similar times and families 
which can lead to high internal 
performance while having sensitivity to 
data not represented in the training set. 
Furthermore, there should be a focus on 
ensuring that all important metrics are 
included in the reported results. For 
example, TNR is important to understand 
how often a model can correctly identify 
a sample as much as precision. 

Beyond this model drift is a major 
topic of concern as cited by Davies et al. 
(2021) and Razaulla et al (2023), as this 
limits the effectiveness of these models in 
protecting against zero-day attacks or 
novel ransomware with little to no 
samples. Designing models without 

accounting for this will lead to rapidly 
decaying effectiveness as time goes on, 
while this drift cannot be stopped entirely 
the models can be designed in a way to 
reduce the impact on effectiveness from 
the change’s ransomware methods. 

 Another avenue of future research 
is in modifying the deep learning 
classifier to take advantage of TF-IDF or 
using meta heuristics to optimize the 
features of the dataset to increase 
performance. TF-IDF is unlikely to stop 
model drift as it in of itself is only one 
aspect of prediction. As stated by Oz and 
Aris (2022), current models lack 
comprehensiveness when it comes to 
prediction and can overly focus on a 
single predictive aspect. To create a 
model that is less prone to drift, a 
comprehensive list of features is 
important to prevent over specificity. 

5. CONCLUSION 

Ransomware is a major threat that all 
organizations and scholars wish to 
defeat. Artificial intelligence is just one of 
many layers of defence which have been 
developed as a tool against ransomware. 
Through the creation of a deep learning 
model and testing it against samples not 
represented in the training phase, an 
estimation of model drift is given. This 
model drift reduces the ACC of the model 
by ten percent, and the MCC almost 
halves. This shows that the neural 
network commonly outlined in similar 
research has flaws when predicting 
samples not represented in training. To 
fix this issue, the datasets used must 
comprehensively cover the many 
different aspects used by ransomware for 
predictive capabilities to remain resistant 
to change. While this cannot stop model 
drift, it can strengthen the performance 
over time. Alongside this, other deep 
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learning techniques such as recurrent 
neural networks, or bi-directional models 
could offer benefit comparatively. More 
data should also be added to the dataset 
to help balance the samples as it may be 
influencing the predictive qualities of the 
ANN. 
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