
Veach and Abualkibash. Testing Deep Learning Methods to Predict Ransomware...| 32

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803
p-ISSN 2810-0670 e-ISSN 2775-5584

Testing Deep Learning Methods to Predict Ransomware

Activity from Hybrid Analysis

Alexander Veach*, Munther Abualkibash *

*Eastern Michigan University, USA

*Corresponding Email: aveach1@emich.edu

A B S T R A C T S A R T I C L E I N F O

This article focuses on using deep learning methods to
predict ransomware from hybrid analysis samples.
Other similar research is analysed to understand the
common methods of detection used to predict
ransomware using various methods of analysis. By
using this knowledge an experiment is created which
tests the performance of a model created from hybrid
analysis of ransomware samples. The training dataset
used is made up of more than five hundred samples
containing 38 different ransomware families and benign
Windows program samples. The resultant model was
then tested against a dataset include ransomware
families not represented in the training dataset, which
showed a decrease in performance. These results were
then compared to other research’s reported results
which highlights potential issues in the way artificial
intelligence models are tested and reported. The paper
then proposes a focus on more complex methods of
prediction, and other potential methods to ensure the
models created are externally as effective as they report.

© 2025 Tim Konferensi UNIKOM

 Article History:
Received 14 Dec 2024
Revised 04 Feb 2025
Accepted 10 Mar 2025
Available online 14 Mar 2025
Publication date 01 June 2026
Aug 2018

Keywords:
Machine Learning,
Artificial Intelligence,
Ransomware,
Model Drift,
Hybrid Analysis

International Journal of Informatics,
Information System and Computer

Engineering

International Journal of Informatics Information System and Computer Engineering 7(1) (2026) 32-43

https://doi.org/10.34010/injiiscom.v7i1.14803

33 | International Journal of Informatics Information System and Computer Engineering 7(1) (2026) 32-43

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803
p-ISSN 2810-0670 e-ISSN 2775-5584

1. INTRODUCTION

Ransomware is a ubiquitous threat in
the modern digital landscape. Stories
about ransomware attacks disabling
critical infrastructure or important
business processes have grown more
common with each passing year. To
combat this growing threat many have
looked to automated detection systems
powered by Artificial Intelligence (AI) to
anticipate and react before irreparable
damage has been caused. To that end, this
paper tests a commonly proposed
method of detection using an artificial
neural network (ANN) trained on
ransomware activity.

Other research has shown the
potential of artificial intelligence when it
comes to predicting ransomware activity
if properly configured, however research
into this topic often report training
metrics with high confidence values.
While this can imply that a model is
efficient, it can also be a sign that the
model may have negatives related to the
data gathered and the methods used.
Alongside this, the aspect of model decay
can be overlooked in research. This paper
seeks to replicate the effects of this
against the commonly proposed models
by creating a testing dataset that contains
new ransomware samples not
represented in the training dataset.

The objective of this research is to test
a deep learning model trained on
ransomware data gathered from hybrid
analysis and compare to other studies to
see if there is any difference when
accounting for ransomware not
represented in the dataset to test the
effects of model drift. By understanding
showcasing the effect of drift on a model,
and the ways to potentially reduce it

future research can better understand
and account for it.

2. METHODOLOGY

2.1. Concepts and Related Work

Ransomware is a specific type of
malware, and the most common
ransomware and the one most often
mentioned in related literature is that of
cryptographic ransomware. This type of
ransomware operates by infiltrating a
system, getting access to higher level
commands on the network or device by
various means, and then encrypting data
in a way that forces the victim to pay a
ransom for a decryption key or to initiate
a system recovery plan.

When it comes to detecting
ransomware there are a couple different
methods that have been used. Some
methods such as those used by Hossain et
al. (2022), Ghazi and Raghava (2022), and
Almousa et al. (2021) operated based on
network communication, focusing on
detecting anomalous traffic on a network
to identify ransomware. This method
relies on the ransomware operating in
non-standard ways once it infiltrates a
network, which can lead to issues in
classification if the network traffic
generated by the ransomware is different
from what is represented in the dataset.

Another method of detection focuses
on detecting high levels of Shannon
entropy which is the amount of
uncertainty in the potential states of a
piece of data, specifically applied to
encrypted files and their predicted
decrypted outputs. This requires analysis
of encrypted files so the trained model
can identify and stop the potential
ransomware associated with this feature.
Hirano and Kobayashi (2019) and Hsu et

https://doi.org/10.34010/injiiscom.v7i1.14803

Veach and Abualkibash. Testing Deep Learning Methods to Predict Ransomware...| 34

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803
p-ISSN 2810-0670 e-ISSN 2775-5584

al. (2021) used Shannon entropy with
other features for their decision-making
models. Shannon entropy is useful for
detecting files with unreliable encryption,
however other studies such as
Moussaileb et al. (2021) mention that
images and other complex files can be
falsely identified with this method.

Other features commonly used in
detection are API calls considered related
to ransomware activity as used by Anand
et al. (2022), a combination of behaviours
as outlined by Alzahrani et al. (2019), or
via detecting changes in disk and
memory activity as tested by Melaragno
and Casey (2022).

There are also different methods of
ransomware analysis which is used to
generate the datasets used in training and
testing for AI. Static analysis focuses on
parsing the code contained in the
program and returns derived inferences.
This method is easy to execute and
reduces the complexity of analysis
needed for real world testing. Sharma
and Sangal (2023) focused on static
feature analysis for their work in
detecting Android malware.

Dynamic analysis returns
information gathered not by parsing the
program’s code, but rather by storing and
analysing the actions taken in a
sandboxed operating system. This
returns information generated from
runtime activity which offers a more in-
depth data of ransomware activity. In
exchange, this method requires a
sandbox for testing and more time to
generate the data used in prediction.
Sukul et al. (2022) used dynamic analysis
to gather runtime data of common
ransomware samples for dataset creation
and prediction.

Finally, there is hybrid analysis
which focuses on gathering information
on ransomware using a combination of
static and dynamic analysis getting the
information from both, at the cost of more
time to generate the necessary data for
prediction. Iqbal et al. (2022) used hybrid
analysis techniques to gather static
program data alongside active capture of
Android devices screens to detect
threatening messages to predict
ransomware.

General reviews into the topic have
noticed some major aspects of research
that are problematic if unaddressed.
Davies et al. (2021) specifically mentioned
that some of the current features used in
detection like Shannon entropy being
questioned in other literature for
effectiveness. Oz et al. (2022) focuses on
the how much of the variance is covered
in the theoretical defensive solutions, and
how models overly focused on one aspect
can be overcome by designing
ransomware that avoids using the
methods being detected. Razaulla et al.
(2023) specifically mentions the issue of
concept drift in relation to prediction
accuracy against topics that undergo
change over time.

Based on the information gathered,
the design of the experiment will use
hybrid analysis of multiple factors to
limit overfitting based on a single
dimension. The training and testing set
are designed to represent an external
environment with ransomware samples
not represented in training being used in
the testing dataset. The results will be
compared against other reported values
for similar models to see if there is any
clear differences.

2.2. Gathering samples for dataset
creation

https://doi.org/10.34010/injiiscom.v7i1.14803

35 | International Journal of Informatics Information System and Computer Engineering 7(1) (2026) 32-43

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803
p-ISSN 2810-0670 e-ISSN 2775-5584

To create the dataset used for training
and testing, hybrid analysis of
ransomware and benign samples were
necessary. Samples were gathered from
malware repositories such as VX-
Underground and Malware Bazaar,
specifically targeting recent ransomware
families such as REvil, Akira, alongside
historic ransomware samples such as
Locky. From this process, five hundred
and eighty-three samples were gathered
from thirty-nine different families. Sixty
benign samples made up of common
Windows productivity software.

2.3. Analysing the collected samples

To analyse these samples CAPEv2
(O’Reilly, 2024), a Cuckoo Sandbox fork,
was used for hybrid analysis. This was
done within an Ubuntu 22.04 LTS virtual
machine hosted on a Windows 11
desktop. The desktop’s specifications are
as follows: an AMD Ryzen 9 5900x 12-
core processor, sixty-four gigabytes of
Random Access Memory (RAM), an
Nvidia GeForce 3080 graphics processing
unit, and a terabyte of solid-state storage.
The virtual machine instance had thirty-
two gigabytes of RAM, twelve
virtualized processor cores, and six
hundred gigabytes of storage.

 Using CAPEv2’s default analysis
toolset, each ransomware produced a
dynamic analysis log which contained
the actions taken by the software sample
executed in the sandbox. CAPEv2 also
did static analysis on the samples tested,
which it derived the signatures detected
in the sample. Further information
produced by this analysis includes a list
of APIs used, the user accounts used,
registry keys accessed, and YARA
detections from the systems memory. A
JavaScript Object Notation (JSON) report

was then output for each sample
processed.

2.4. Deriving features from the JSON
reports

Taking the JSON reports, Python 3
was used to parse and select features
related to prediction. These features
include the Application Programming
Interface (API) calls executed during the
runtime, the registry keys accessed, the
signatures recognized during static
analysis, the number of YARA detections,
and operations executed. API calls were
divided by the API called and the number
of calls executed during analysis. The
signatures and registry keys were
transformed into nominal values from
strings using WEKA (Frank, 2016) 3.9.6’s
StringToWordVector method.

This created a dataset with one
thousand and seventeen features,
including the value of “safe or unsafe”
which represented safe as a value of zero
and unsafe as a value of one.

While the prior methods created a
dataset for training, to test the
performance of the model against drift a
separate dataset for testing containing a
mixture of ransomware families
represented during training, and newer
ransomware not included in training
such as Blacksuit. This testing dataset
was created using the same methods
prior. Due to the use of
StringToWordVector from WEKA, some
signatures represented in the testing set
were not included in the training set. This
was accounted for in testing via
manipulating the features available for
decision making to represent real-world
scenarios where the entirety of the data
may not be available.

2.5. Metrics used for analysis

https://doi.org/10.34010/injiiscom.v7i1.14803

Veach and Abualkibash. Testing Deep Learning Methods to Predict Ransomware...| 36

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803
p-ISSN 2810-0670 e-ISSN 2775-5584

To analyze the performance of the

models during testing the following

metrics were used. These values are

derived from a confusion matrix which is

made up of four values: true positive (TP)

which is where the sample is ransomware

and correctly identified as such, true

negative (TN) which is where the sample

is benign and correctly identified as such,

false positive (FP) where the sample is

incorrectly identified as ransomware, and

false negative (FN) where a sample of

ransomware is incorrectly identified as

benign.

 Accuracy (ACC) is a measure of

how often the model correctly

identifies TP and TN compared to

the number of total classifications.

The closer to 1, the better the

model performed.

 Recall (REC) is a measure of how

often ransomware is correctly

identified compared to the amount

of ransomware in the dataset. The

closer to one, the better the model

detects ransomware.

 Precision (PREC) is a measure of

how often a positive label is true,

compared to false positives. The

closer to one, the better the

program is at avoiding false

positives.

 True Negative Rate is a measure of

how often a negative label is true,

compared to the number of false

negatives. The closer to one, the

better the model is at correctly

identifying benign samples.

 F-Score (F1) is a measurement of

harmony between recall and

precision, with a higher score

meaning a model is less likely to

misclassify a sample.

 Matthew’s Correlation Coefficient

(MCC) is a measurement of the

total model and shows how

reliable the predictions are. MCC

works better with imbalanced

data. The lower the number, the

higher the chances are that guesses

are random.

ACC =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

REC =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

PREC =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3)

TNR =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 (4)

F1 =
(2∗(

𝑇𝑃

𝑇𝑃+𝐹𝑃
)∗(

𝑇𝑃

𝑇𝑃+𝐹𝑁
)

(
𝑇𝑃

𝑇𝑃+𝐹𝑃
)+(

𝑇𝑃

𝑇𝑃+𝐹𝑁
)

 (6)

MCC =
𝑇𝑁∗𝑇𝑃−𝐹𝑁∗𝐹𝑃

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)

(7)

2.6. Creating the Model

To create the models used for testing,

Conda and PyTorch (Ansel, 2024) were

used to generate a feedforward artificial

neural network (ANN) with three layers.

The model’s predictive features were

optimized using Adam, a popular

stochastic optimizer for deep learning.

This model was trained using five-fold

cross-validation optimizing around

reducing loss and high MCC

performance.

https://doi.org/10.34010/injiiscom.v7i1.14803

37 | International Journal of Informatics Information System and Computer Engineering 7(1) (2026) 32-43

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803
p-ISSN 2810-0670 e-ISSN 2775-5584

3. RESULTS AND DISCUSSION

3.1. Procedure

After creating the model as outlined
in the prior section, the model’s training
metrics were generated using a
combination of “NumPy”, “scikit-learn”,
“matplotlib”, and “pandas” packages.
The performance during training was
high, with PREC and TNR returning
values of 1.0, and other metrics returning
values in the high .9 range. When
graphed to show the Receiver Operating
Characteristics (see figure 1), the model
covers at least ninety percent of results
with proper classification. While these
metrics potentially show a powerful
model, these high values suggest that the
model may have overfit during training.
This means that the model believes that it
can accurately predict all values in the
training dataset, however it could have

external validity issues and could
misidentify samples not included during
training.

 To test this, the testing set which
contained a mixture of included and
excluded ransomware family samples
was used to test the performance of the
model. When tested, the model achieved
a value of 0.862 in accuracy, and a true
negative rate of 0.913. When the ROC was
graphed (see figure 2), it still showed that
eighty percent of results were correctly
identified. However, the F1 and MCC
lowered to 0.666 and 0.58 respectively.
This means that while the model could
correctly predict the results, there was a
moderate chance that the model could
not determine the result with confidence
and misidentified samples because of it.
See figure 3 for a graphical comparison of
the training and testing performance of
the ANN.

Fig. 1. The ROC graph generated based on the ANN model’s performance in
training.

https://doi.org/10.34010/injiiscom.v7i1.14803

Veach and Abualkibash. Testing Deep Learning Methods to Predict Ransomware...| 38

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803
p-ISSN 2810-0670 e-ISSN 2775-5584

Fig. 2. The ROC graph generated based on the ANN model’s performance in
testing.

Fig. 3. Bar graph of the ANN model’s metrics from training and testing.

0
,9

9
5

1 0
,9

5

1 0
,9

7
3

0
,9

7
1

0
,8

6
2

0
,6

6
6

0
,6

6
6 0

,9
1

3

0
,6

6
6

0
,5

8

A C C U R A C Y P R E C I S I O N R E C A L L T R U E
N E G A T I V E

R A T E

F - S C O R E M C C

TRAINING VS TESTING
PERFORMANCE

ANN (Training) ANN (Testing)

https://doi.org/10.34010/injiiscom.v7i1.14803

39 | International Journal of Informatics Information System and Computer Engineering 7(1) (2026) 32-43

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803
p-ISSN 2810-0670 e-ISSN 2775-5584

Table 1. Testing Results vs Other Reported Results

3.2. Analysis of Results

The results gathered from the testing
shows some major limitations that need
to be fixed to increase performance. First,
the training dataset is less effective when
it comes to identifying ransowmare not
represented in training, this means that
the features used in prediction were
inefficient when it comes to external
validity. To fix this, the features used in
training and testing should be reduced or
re-factored to increase the models
resiliance when predicitng new
ransomware. Alongside this, current
predictions are being done using a bag of
words method, other methods such as
term frequency inverse frequency

detection (TF-IDF) could offer benefits to
the performance and resiliancy of the
model used.

The model’s performance in training
had similar results to other literature in
the field, which often use similar
methodology to test their models.

Nurnoby and El-Alfy (2019) created a
deep neural network similar to the one
constructed in this experiment, however
they also used other features for decision-
making such as the files deleted. They
reported similar to this articles training
metrics, however their ransomware was
older and the perforamnce of their work
was not tested on something new.
Sharma, Krishna, and Kumar (2020) did
something similar but tested against

Model

Tested

Accuracy Precision Recall True

Negative

Rate

F-Score MCC

ANN

(Training)

0.995 1.0 .95 1.0 0.973 0.971

ANN

(Testing)

.862 .666 0.666 0.913 0.666 0.580

DNN by

Nurnoby

and El-Alfy

(2019)

.972 .980 .952 N/A .966 N/A

ANN by

Sharma,

Krishna and

Kumar

(2020)

0.992 0.997 0.989 N/A 0.993 N/A

RF by

Masum et

al. (2022)

0.99 0.99 0.97 N/A 0.97 N/A

https://doi.org/10.34010/injiiscom.v7i1.14803

Veach and Abualkibash. Testing Deep Learning Methods to Predict Ransomware...| 40

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803
p-ISSN 2810-0670 e-ISSN 2775-5584

specifically android operating systems.
Their dataset had 1045 features for
prediction and preformed comparably to
this papers ANN model during training.
Masum et al. (2022) tested a less complex
ensemble classifier, specifically random
forest, and reported almost ones in their
metrics.

This could mean that other works
could suffer a similar decrease in efficacy
when testing against samples not
included in training. While the other
models differing features may offer some
explanation for the difference in
performance, this could be caused by
insufficient datasets that are designed for
internal validity rather than representing
real world scenarios as explained by Oz
and Aris (2022) in their review.

4. Future Work

For future work into this detecting
ransomware with AI, a major focus
should be on ensuring external validity
with the models created. Currently many
studies report high performance values
during their training and testing phase,
however the datasets used are often using
samples from similar times and families
which can lead to high internal
performance while having sensitivity to
data not represented in the training set.
Furthermore, there should be a focus on
ensuring that all important metrics are
included in the reported results. For
example, TNR is important to understand
how often a model can correctly identify
a sample as much as precision.

Beyond this model drift is a major
topic of concern as cited by Davies et al.
(2021) and Razaulla et al (2023), as this
limits the effectiveness of these models in
protecting against zero-day attacks or
novel ransomware with little to no
samples. Designing models without

accounting for this will lead to rapidly
decaying effectiveness as time goes on,
while this drift cannot be stopped entirely
the models can be designed in a way to
reduce the impact on effectiveness from
the change’s ransomware methods.

 Another avenue of future research
is in modifying the deep learning
classifier to take advantage of TF-IDF or
using meta heuristics to optimize the
features of the dataset to increase
performance. TF-IDF is unlikely to stop
model drift as it in of itself is only one
aspect of prediction. As stated by Oz and
Aris (2022), current models lack
comprehensiveness when it comes to
prediction and can overly focus on a
single predictive aspect. To create a
model that is less prone to drift, a
comprehensive list of features is
important to prevent over specificity.

5. CONCLUSION

Ransomware is a major threat that all
organizations and scholars wish to
defeat. Artificial intelligence is just one of
many layers of defence which have been
developed as a tool against ransomware.
Through the creation of a deep learning
model and testing it against samples not
represented in the training phase, an
estimation of model drift is given. This
model drift reduces the ACC of the model
by ten percent, and the MCC almost
halves. This shows that the neural
network commonly outlined in similar
research has flaws when predicting
samples not represented in training. To
fix this issue, the datasets used must
comprehensively cover the many
different aspects used by ransomware for
predictive capabilities to remain resistant
to change. While this cannot stop model
drift, it can strengthen the performance
over time. Alongside this, other deep

https://doi.org/10.34010/injiiscom.v7i1.14803

41 | International Journal of Informatics Information System and Computer Engineering 7(1) (2026) 32-43

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803
p-ISSN 2810-0670 e-ISSN 2775-5584

learning techniques such as recurrent
neural networks, or bi-directional models
could offer benefit comparatively. More
data should also be added to the dataset
to help balance the samples as it may be
influencing the predictive qualities of the
ANN.

ACKNOWLEDGMENTS

Thanks to GameAbove and the
College of Engineering and Technology
at Eastern Michigan University for the
support given with this study.

REFERENCES

Almousa, M., Osawere, J., & Anwar, M. (2021). Identification of Ransomware families

by Analyzing Network Traffic Using Machine Learning Techniques. In 2021

Third International Conference on Transdisciplinary AI (TransAI) (pp. 19–24). IEEE.

https://doi.org/10.1109/transai51903.2021.00012

Alzahrani, A., Alshahrani, H., Alshehri, A., & Fu, H. (2019). An Intelligent Behavior-

Based Ransomware Detection System For Android Platform. In 2019 First IEEE

International Conference on Trust, Privacy and Security in Intelligent Systems and

Applications (TPS-ISA). IEEE. https://doi.org/10.1109/tps-isa48467.2019.00013

Anand, P. M., Charan, P. S., & Shukla, S. K. (2022). A Comprehensive API Call

Analysis for Detecting Windows-Based Ransomware. In 2022 IEEE International

Conference on Cyber Security and Resilience (CSR) Workshops (pp. 337–344). IEEE.

https://doi.org/10.1109/csr54599.2022.9850320

Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voznesensky, M., Bao, B., Bell, P.,

Berard, D., Burovski, E., Chauhan, G., Chourdia, A., Constable, W., Desmaison,

A., DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind, M., . . . Chintala, S.

(2024). PyTorch 2: Faster machine learning through dynamic Python bytecode

transformation and graph compilation (Vol. 5, pp. 929–947).

https://doi.org/10.1145/3620665.3640366

Davies, S. R., Macfarlane, R., & Buchanan, W. J. (2021). Review of current ransomware

detection techniques. 2021 International Conference on Engineering and Emerging

Technologies (ICEET), 1–6. https://doi.org/10.1109/iceet53442.2021.9659643

Ghazi, M. R., & Raghava, N. S. (2022). Detecting Ransomware Attacks in Cloud

Environment Using Machine Learning-Based Intelligence System in COVID-19

Chaos. 2022 IEEE Conference on Interdisciplinary Approaches in Technology

and Management for Social Innovation (IATMSI).

https://doi.org/10.1109/iatmsi56455.2022.10119441

Hirano, M., & Kobayashi, R. (2019). Machine Learning Based Ransomware Detection Using

Storage Access Patterns Obtained From Live-forensic Hypervisor (pp. 1–6). 2019

https://doi.org/10.34010/injiiscom.v7i1.14803

Veach and Abualkibash. Testing Deep Learning Methods to Predict Ransomware...| 42

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803
p-ISSN 2810-0670 e-ISSN 2775-5584

Sixth International Conference on Internet of Things: Systems, Management

and Security (IOTSMS). https://doi.org/10.1109/iotsms48152.2019.8939214

Hossain, M. S., Hasan, N., Samad, M. A., Shakhawat, H. M., Karmoker, J., Ahmed, F.,

Fuad, K. F. M. N., & Choi, K. (2022). Android ransomware detection from traffic

analysis using metaheuristic feature selection. IEEE Access, 10, 128754–128763.

https://doi.org/10.1109/access.2022.3227579

Hsu, C., Yang, C., Cheng, H., Setiasabda, P. E., & Leu, J. (2021). Enhancing file entropy

analysis to improve machine learning detection rate of ransomware. IEEE

Access, 9, 138345–138351. https://doi.org/10.1109/access.2021.3114148

Iqbal, M. J., Aurangzeb, S., Aleem, M., Srivastava, G., & Lin, J. C. (2022).

RTHREatDroid: A ransomware detection approach to secure IoT based

healthcare systems. IEEE Transactions on Network Science and Engineering, 10(5),

2574–2583. https://doi.org/10.1109/tnse.2022.3188597

Masum, M., Faruk, M. J. H., Shahriar, H., Qian, K., Lo, D., & Adnan, M. I. (2022).

Ransomware classification and detection with machine learning algorithms.

2022 IEEE 12th Annual Computing and Communication Workshop and Conference

(CCWC), 0316–0322. https://doi.org/10.1109/ccwc54503.2022.9720869

Melaragno, A., & Casey, W. (2022). Change Point Detection with Machine Learning

for Rapid Ransomware Detection. 2021 IEEE Intl Conf on Dependable, Autonomic

and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf

on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology

Congress (DASC/PiCom/CBDCom/CyberSciTech), 1–9.

https://doi.org/10.1109/dasc/picom/cbdcom/cy55231.2022.9927828

Moussaileb, R., Cuppens, N., Lanet, J., & Bouder, H. L. (2021). A survey on Windows-

based ransomware taxonomy and detection Mechanisms. ACM Computing

Surveys, 54(6), 1–36. https://doi.org/10.1145/3453153

Nurnoby, M. F., & El-Alfy, E. M. (2019). Overview and Case Study for Ransomware

Classification Using Deep Neural Network. 2019 2nd IEEE Middle East and North

Africa COMMunications Conference (MENACOMM).

https://doi.org/10.1109/menacomm46666.2019.8988551

Razaulla, S., Fachkha, C., Markarian, C., Gawanmeh, A., Mansoor, W., Fung, B. C. M.,

& Assi, C. (2023). The Age of Ransomware: A survey on the evolution,

taxonomy, and research directions. IEEE Access, 11, 40698–40723.

https://doi.org/10.1109/access.2023.3268535

https://doi.org/10.34010/injiiscom.v7i1.14803

43 | International Journal of Informatics Information System and Computer Engineering 7(1) (2026) 32-43

DOI: https://doi.org/10.34010/injiiscom.v7i1.14803
p-ISSN 2810-0670 e-ISSN 2775-5584

O'Reilly, K., & Brukhovetskyy, A. CAPE: Malware Configuration And Payload

Extraction (Version 2) [Computer software].

https://github.com/kevoreilly/CAPEv2

Oz, H., Aris, A., Levi, A., & Uluagac, A. S. (2022). A survey on Ransomware: Evolution,

taxonomy, and defense solutions. ACM Computing Surveys, 54(11s), 1–37.

https://doi.org/10.1145/3514229

Sharma, S., Krishna, C. R., & Kumar, R. (2020). Android Ransomware Detection using

Machine Learning Techniques: A Comparative Analysis on GPU and CPU (pp. 1–6).

2020 21st International Arab Conference on Information Technology (ACIT).

https://doi.org/10.1109/acit50332.2020.9300108

Sharma, N., & Sangal, A. (2023). Machine Learning Approaches for Analysing Static

features in Android Malware Detection. In 2023 Third International Conference

on Secure Cyber Computing and Communication (ICSCCC) (pp. 93–96). IEEE.

https://doi.org/10.1109/icsccc58608.2023.10176445

Sukul, M., Lakshmanan, S. A., & Gowtham, R. (2022). Automated Dynamic Detection

of Ransomware using Augmented Bootstrapping. 2022 6th International

Conference on Trends in Electronics and Informatics (ICOEI), 787–794.

https://doi.org/10.1109/icoei53556.2022.9777099

https://doi.org/10.34010/injiiscom.v7i1.14803
https://github.com/kevoreilly/CAPEv2

