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A B S T R A C T S  A R T I C L E   I N F O 

Sonar image object detection is an important part of 
underwater exploration, submarine rescue, hostile 
object reconnaissance, and other critical maritime tasks. 
Accurate and efficient detection of objects in sonar 
imagery plays a key role in ensuring operational success 
in these domains. The breakthrough of deep learning-
related technologies has brought new opportunities for 
the development of sonar image object detection. By 
leveraging advanced machine learning techniques, 
researchers have developed systems capable of 
achieving higher accuracy and robustness compared to 
traditional detection methods. However, despite these 
advancements, the relevant systematic research and 
practical applications remain insufficiently explored. 
Traditional approaches often struggle with challenges 
such as noise, low resolution, and the dynamic 
underwater environment, which limit their 
effectiveness. In contrast, deep learning models, with 
their data-driven advantages, have demonstrated 
significant potential in overcoming these challenges by 
learning robust feature representations from large-scale 
datasets. To address these gaps, a sonar image object 
detection system is designed to meet the requirements 
of accuracy, speed, portability, extensibility, and 
deployment adaptability in real-world scenarios. The 
system architecture is modular, consisting of three 
interdependent subsystems: dataset generation, 
algorithm model training and testing, and model 
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deployment. The dataset generation subsystem ensures 
high-quality annotated sonar data, which is critical for 
effective model training. The training and testing 
subsystem incorporates state-of-the-art deep learning 
algorithms to optimize detection performance. Finally, 
the deployment subsystem focuses on translating the 
trained models into practical applications, ensuring 
they meet operational requirements under diverse 
environmental conditions. The system has been applied 
to underwater suspicious object detection tasks, 
addressing a range of scenarios requiring precise 
identification and localization of targets. The 
experimental results demonstrate that the object 
detection system achieves reliable and accurate 
performance, providing good test data and exhibiting 
excellent application outcomes. This work contributes 
to advancing the field of sonar image object detection, 
paving the way for future innovations in underwater 
exploration and related disciplines.   

© 2021 Tim Konferensi UNIKOM 

1. INTRODUCTION 

LoImaging sonar uses the 
transmission and reception of sound 
signals for imaging, with a long detection 
range. It is currently a commonly used 
equipment for underwater exploration, 
underwater rescue, hostile target 
reconnaissance, and other tasks. 
Autonomous Target Recognition (ATR) 
of sonar images, also known as Object 
Detection, requires locating the area in 
the image that is most likely to contain 
the target and determining its category 
(Lou, et al., 2020). Traditional object 
detection algorithms usually first use 
filtering methods such as sliding 
windows to list all possible bounding 
rectangle boxes of the target, and then use 
manually designed features such as 
edges and textures for classification, 
which cannot achieve good performance 
in complex and changing underwater 
environments. 

In recent years, deep learning has 
made breakthrough progress by 
constructing feature extraction modules 
in a hierarchical manner, and 
constructing deep neural networks 
(DNNs) that are connected layer by layer 
to automatically learn image features 
through data-driven methods, 
overcoming the limitations of single 
artificial feature patterns and weak 
discriminative ability. The object 
detection algorithm based on deep 
learning has achieved end-to-end joint 
optimization of localization and 
classification tasks. Whether it is 
processing visible light natural images 
(Lin, 2017), or dealing with forward-
looking sonar (Fan, et al., 2021), side scan 
sonar (Wang, et al., 2021), and synthetic 
aperture sonar images (Callow, 2003), it 
can achieve better detection accuracy 
than traditional methods (Dong & Wang, 
2016; Kotwal, et al., 2023). 
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However, sonar image acquisition 
requires a large amount of resources and 
is often not publicly disclosed due to the 
involvement of sensitive information 
(Hożyń, 2021). Therefore, systematic 
research and application of deep learning 
based sonar image target detection are 
still insufficient. Practical engineering 
applications not only require high 
accuracy of detection algorithms, but also 
have certain requirements for software 
system quality attributes, running speed, 
deployment environment, and other 
aspects. Therefore, this article utilizes the 
data-driven advantages of deep learning 
models to design a sonar image target 
detection system, which does not 
necessarily indicate good performance in 
both test data and practical applications. 

2. METHOD 

2.1.  System Composition 

The designed sonar image object 
detection system based on deep learning 
includes three subsystems: dataset 
generation, algorithm model training and 
testing, and model deployment and 
application, as shown in Figure 1. The 
input and output of each subsystem are 
interrelated and do not have strong 
coupling relationships, meeting software 
system quality attributes such as 
portability, scalability, and ease of use. 
The designed system has universality 
and does not depend on a specific 
application task. 

 

Fig. 1. Sonar image object detection system. 

The data set generation subsystem is 
responsible for collecting, labeling, 
processing, generating and managing 
data sets, labeling real-time data of field 
tests, existing unlabeled images and 
Internet data, generating data sets after 
preprocessing and training set test set 
division, and supporting modification, 
consolidation and other functions.  

The algorithm model training and 
testing subsystem first constructs an 

object detection deep learning model, 
then reads the training set data for 
training, and reads the test set data to test 
the trained model. The model parameter 
file that meets the requirements of 
algorithm accuracy and speed is output. 

The model deployment application 
subsystem converts model parameter 
files according to the software and 
hardware environment requirements of 
different deployment platforms, and 
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writes application programs that serve 
actual tasks. Then, it is deployed on the 
project machine, reads the model, and 
performs forward calculations. 

2.2. Dataset Generation Subsystem 

The data collection and annotation 
functions are divided into two modes: 
offline and online. Offline mode refers to 
the manual annotation of existing 
unlabeled sonar images. The data sources 
are usually historical data saved in field 
tests and open source images 
downloaded from the Internet. After 
collecting data, open source annotation 
software such as labellmg, labelme, Vott, 
CVAT, etc. can be used to annotate sonar 
images. Online mode refers to the real-
time analysis of raw data transmitted by 
sonar equipment using relevant display 
software at the experimental site, and 
manually annotating and exporting the 
results after generating sonar images. 
Due to the known placement location of 

underwater targets during on-site 
testing, online annotation of category 
information is usually more accurate than 
offline annotation. 

During the annotation process, it is 
advisable to avoid using narrow, 
extremely long to wide target bounding 
boxes for annotation, and to keep the 
target in the center of the bounding box 
to reduce irrelevant background 
information. The annotation format 
should also be consistent. As shown in 
Figure 2, 𝑃1 is the top left vertex of the 
rectangular box, 𝑃2 is the bottom right 
vertex, 𝑃0 is the center point, and 𝑤, ℎ  
represent the width and height of the 
rectangular box. Usually, annotations are 
recorded in data formats of [𝑥1, 𝑦1, 𝑤, ℎ] or 
[𝑥1, 𝑦1, 𝑥2, 𝑦2]. The YOLO series algorithm 
(Redmon, 2016) normalizes the 
coordinates using the width and height of 
the image as denominators, and records 
the normalized center point coordinates 
and rectangle width and height. 

 

Fig. 2. An example of annotation coordinate 

Traditional detection methods 
typically use filtering algorithms to 
preprocess sonar images, eliminate 
speckle noise, and improve detection 
accuracy (Kotwal, et al., 2023). Deep 
learning trains neural networks with 
data-driven approaches, and using noisy 

data to train models can improve 
algorithm robustness and resistance to 
attacks (Zhang & Wang, 2019). Therefore, 
this system does not perform filtering 
preprocessing operations on the dataset 
images. 
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Due to the difficulty in obtaining 
sonar images, the number of training 
images is usually small, which can easily 
lead to overfitting and lack of 
generalization in deep learning models. 
Therefore, data augmentation methods 
are crucial. The basic methods include 
geometric transformation operations 
such as flipping, rotating, cropping, 
deforming, scaling, etc., without 
modifying the content of the image itself. 
They are suitable for the sonar image. 

Further enhancement methods 
typically use color space transformations 
to modify the semantic information of the 
image (Bochkovskiy, et al., 2020). The 
impact of such methods on training 
results cannot be predicted in advance, so 
they are often attempted during the 
model training phase. 

Different types and models of sonar 
equipment and sonar image datasets 
collected in different water bodies should 
be classified and summarized. The 
commonly used sonar equipment 
includes forward-looking sonar, side 
scan sonar, and synthetic aperture sonar. 
Different types of sonar images have 
different styles. Forward looking sonar 
scans the fan-shaped area ahead with low 
image resolution and sensitivity to noise, 
while side scanning sonar and synthetic 
aperture sonar have high image 
resolution but lower image accuracy [6]. 
In addition, the distribution of sonar 
image data is also affected by factors such 
as water quality and underwater 
environment. The learnable information 
contained in data with different 
distributions varies, and the distribution 
of data in the source domain and target 
domain can affect the testing accuracy of 
deep learning models (Wang & Deng, 
2018). Therefore, the classification of 

sonar image datasets needs to consider 
various factors that affect data 
distribution. 

2.3. Algorithm Model Training and 

Testing Subsystem 

The algorithm model training and 
testing subsystem is typically deployed 
on servers configured with NVIDIA 
GPUs. The currently popular deep 
learning frameworks include PyTorch 
(Paszke, et al., 2019), TensorFlow (Abadi, 
et al., 2016) PaddlePaddle, etc. The widely 
used open-source object detection 
algorithm frameworks MMDetection 
(Chen, et al., 2019), Detectron2, and 
YOLO series models (Bochkovskiy, et al., 
2020) are all implemented based on 
PyTorch and Linux. Therefore, based on 
the above framework, this system defines 
the key module for constructing and 
training a deep learning model for sonar 
image object detection: Backbone. The 
backbone network is the main 
component of DNN for extracting image 
features. There are currently many high-
performance Convolutional Neural 
Networks (CNNs), such as ResNet (He, et 
al., 2016), DenseNet (Xie, et al., 2017), 
ResNext (Gao, et al., 2019), and Res2Net. 
Generally speaking, CNNs with stronger 
feature extraction capabilities have a 
larger number of parameters, resulting in 
slower inference speed. Therefore, 
lightweight CNNs are often used for high 
real-time tasks. 

To further enhance feature richness, 
Neck networks typically use networks 
represented by Feature Pyramid 
Networks (FPNs) to construct multi-scale 
features (Lin, et al., 2017), in order to 
improve the accuracy of small object 
detection in the model. In side scan sonar 
and synthetic aperture sonar images, the 
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target to be detected often only occupies 
a small part of the entire image, so 
designing a neck network is crucial. The 
head network samples the extracted 
feature maps and calculates classification 
and localization results. The commonly 
used sampling methods currently 
include two-stage, one-stage, and anchor 
free. One stage of the method directly 
considers each coordinate point as a 
potential target, without additional 
candidate box extraction steps, and runs 
faster. Data augmentation is a data 
augmentation method based on color 
space transformation, commonly used in 
the training process, such as CutOut, 
CutMix, MixUp. These algorithms enrich 
the information of positive sample 
targets, alleviate the problem of 
insufficient sonar image data, and 
improve training efficiency and testing 
accuracy. 

After the construction of the sonar 
target detection model is completed, the 
system reads the training set from the 
sonar image dataset for training, and then 
uses the test set for performance 
evaluation. For specific tasks, multiple 
different sonar image training sets can be 
selected for combination and 
comprehensively evaluated on multiple 
test sets. The model parameter files that 
meet the requirements of algorithm 
accuracy and speed can be output with a 
file extension of ". pt". 

Similar to the evaluation indicators of 
MSCOCO (Lin, et al., 2014) benchmark, 
the Intersection over Union (IoU) of the 
predicted box and the actual box is used 
to reflect the quality of a single prediction 
result (Jankovic, et al., 2024). The result 
with IoU value and classification 
confidence greater than the established 
threshold is called True Positive (TP), 
which means it is correct; Otherwise, it is 

a False Positive (FP). Since the algorithm 
does not output negative sample 
background boxes, there is no True 
Negative (TN). False negative (FN) 
represents undetected target boxes, i.e. 
missed detections. Calculate the precision 
(P), recall (R), and average precision (AP) 
based on this: 

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

AP = ∫  
1

0

 PdR (3)

 

The higher the IoU threshold and 
classification confidence set, the more 
stringent the criteria for predicting 
correctly. Usually, AP is calculated at 
intervals of 0.05 within the IoU threshold 
range of [0.5, 0.95], and the average score 
is taken as the comprehensive score. If the 
sonar image resolution is high but the 
target to be detected is small, the IoU 
interval can be set to [0.2, 0.65]. 

2.4. Model Deployment Application 

Subsystem 

The model deployment application 
subsystem is responsible for deploying 
the trained sonar image object detection 
model to run in a specific environment. 
Due to issues such as dynamic modeling, 
implementation of new operators, and 
framework compatibility, model 
parameter files cannot be directly called 
when the runtime environment is 
different from the model training 
environment. The MMDeploy open-
source deployment tool can be used to 
convert the model parameter files output 
by the algorithm model training and 
testing subsystems. MMDeploy supports 
running multiple algorithm libraries and 
converting model files in various formats, 
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and supports Python, C++ interfaces and 
Windows, Linux operating systems. 

After completing the conversion of 
the model parameter file, write an 
application to read and run it. The 
program includes the following 
functions: 

(1) The data receiving function 
obtains sonar image data to be processed 
from upstream programs through file 
reading, network transmission protocols, 
memory sharing, and other methods. 

(2) Target detection function: Read 
the converted model parameter file, load 
the memory/video memory, input the 
sonar image for calculation, and obtain 
the target detection result. According to 
the actual application effect, image 
preprocessing and result post-processing 
algorithms can be added. 

(3) Result sending function: Output 
detection results through file storage, 
network transmission protocol, memory 
sharing, and other methods. 

The application program of the object 
detection system runs independently and 
interacts with upstream and downstream 
programs through established interfaces, 
meeting the principle of decoupling. 

2.5. Model Deployment Application 

Subsystem 

This article applies the designed 
sonar image target detection system to 
underwater suspicious target detection 
tasks to verify its effectiveness. 

The system uses a synthetic aperture 
sonar device from a certain company to 
conduct lake experiments in a fixed water 
area. Firstly, arrange multiple suspicious 
target shell models; Then, unmanned 
boat towing equipment is used to carry 
sonar equipment for data collection and 
annotation. During the navigation 
process, remotely control the unmanned 
boat to enter the mine laying area from 
different directions. Since the mine laying 
location is known in advance, controlling 
the direction of the unmanned boat's 
navigation ensures that any suspicious 
targets placed can appear within the 
sonar scanning range. The sonar image is 
rendered and synthesized by synthetic 
aperture sonar equipment and 
transmitted through line signals. The 
resolution of the collected original left 
sonar and right sonar images is 
1900×1900. The positive sample 
annotation only has one category of 
suspicious targets, and the position 
annotation is recorded based on the 
normalized center point coordinates and 
rectangle width and height. 

Using geometric transformations 
such as scaling, cropping, stitching, and 
flipping, the original sonar images were 
processed to generate datasets with 
resolutions of 640×640, 1024×1024, and 
3800×1900 (left and right sonar image 
stitching), totaling 1362 images. The 
specific division of the generated dataset 
and the number of images are shown in 
Table 1. 
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Table 1. Synthetic aperture sonar image dataset. 

Resolution 

Number of 

Training Set 

Images/Sheet 

Number of Test 

Set Images/Sheet 

640 × 640 446 41 

1024

× 1024 
393 47 

3800

× 1900 
388 47 

 

Considering the real-time 
requirements of system operation, the 
object detection model uses YOLOv5s 
network. The training images are 
enhanced using CutOut, MixUP, and 
Mosaic methods. The new image 
modified by combination is uniformly 
scaled to a resolution of 640×640 through 
adaptive scaling, with black borders 
added without changing the aspect ratio 
of the original information. The input 
image is processed through a backbone 
network to obtain multi-scale features 
with resolutions of 80×80, 40×40, and 
20×20, and then expanded, overlaid, and 
enhanced in a neck network based on 
FPN. The output channels are 128, 256, 
and 512 layers of features, respectively. 
Then, the multi-scale features are input 
into the head network, and each pixel 
obtains a prediction result with 18 
channels (4-dimensional represents the 
target coordinates, 1-dimensional 
represents the target confidence, 1-
dimensional represents the suspicious 
target category result, with 3 preset 
anchor sizes, so 6×3=18). During the 

training process, both classification loss 
and confidence loss are calculated using 
the BCEWithLogitsLoss function, while 
coordinate regression loss is calculated 
using the GIOU method. The loss 
generated by multi-scale feature maps is 
weighted and fused to improve the 
accuracy of small object detection. The 
training parameters are all set to the 
default values of the YOLOv5 model. 
During the testing phase, weighted non 
maximum suppression is used to 
eliminate redundant prediction boxes, 
with an IoU threshold of 0.6 during the 
screening process. 

After training, output the model 
parameter files that meet the accuracy 
requirements of the algorithm in ". pt" 
format. Due to the software and 
hardware environment constraints of the 
underwater suspicious target detection 
project, the system application program 
needs to be written in C++, and the 
deployed project computer is configured 
with Windows operating system, Inter 
(R) Core (TM) i7-7700 CPU @ 3.60 GHz, 
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16 GB of memory, and NVIDIA GeForce 
RTX 2080 graphics card. PyTorch 
provides LibTorch Windows, a C++ 
based inference backend engine. 
Therefore, the system uses a model 
parameter conversion tool to convert the 
". pt" format file to the ". torchscript. pt" 
format available for the engine. 

The system application calls 
LibTorch related library functions to 
complete functions such as reading, 
loading, and inference of the converted 
model file parameters. Then, based on 
network transmission protocols, sonar 
data parsing, and other link libraries, 

develop sonar data receiving functions, 
as well as detection result sending and 
saving functions. At this point, the 
underwater suspicious target detection 
system has been implemented. 

3. RESULTS AND DISCUSSION 

This chapter evaluates the detection 
performance of the system application 
using 135 synthetic aperture sonar 
images included in the test set. Tables 2 
and 3 show the test results at IoU 
thresholds of 0.5 and 0.2, respectively. 

 

Table 2. Experimental results of IoU=0.5 

Classification Confidence 

Threshold 
𝐏/% 𝐑/% 

𝐀𝐏

/% 

𝐀𝐏@ 

𝟎. 𝟓

∼ 𝟎. 𝟗𝟓/% 

0.4 76.19 83.72 77.71 32.71 

0.3 70.14 86.05 79.41 33.23 

0.2 64.10 87.21 80.18 33.45 

0.1 55.00 89.53 81.60 33.77 

0.005 42.16 90.70 82.09 33.92 

 

According to the data in the table, 
when IoU is set to 0.2, the detection 
accuracy will significantly improve, 
indicating that there are a certain number 
of predicted boxes that deviate from their 
actual positions. The suspicious 
underwater targets in synthetic aperture 
sonar images do not overlap or appear 

densely, so the predicted results with a 
certain deviation have not been located 
incorrectly. This also indicates that there 
is room for further improvement in the 
localization performance of object 
detection algorithms. 
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Table 3. Experimental results of IoU=0.2 

Classification Confidence 

Threshold 
𝐏/% 𝐑/% 

𝐀𝐏

/% 

𝐀𝐏@ 

𝟎. 𝟐

∼ 𝟎. 𝟔𝟓/% 

0.4 81.45 89.53 85.75 77.38 

0.3 74.88 91.86 87.56 78.77 

0.2 68.38 93.02 88.38 79.42 

0.1 58.21 94.77 89.49 80.34 

0.005 44.86 96.51 90.26 80.88 

When the set classification 
confidence is high, the accuracy P is high, 
and at this time, many low confidence 
prediction results are eliminated, 
reducing the false alarm rate (false alarm 
rate); However, due to the exclusion of 
low confidence results, the number of 
predicted boxes decreased, resulting in a 
decrease in the recall rate R and an 
increase in the missed detection rate 
(false alarm rate). When setting low 
classification confidence, although the 
average accuracy AP and comprehensive 
score will improve, the accuracy P will 
significantly decrease, resulting in a high 
false alarm rate. On the natural optical 
image dataset MS COCO, the 
classification confidence is usually set to 
0.005 to achieve higher average accuracy. 
In this task, although setting the 

classification confidence level to 0.005 
yields the highest average accuracy value 
of 82.09% (90.26%), it can lead to a high 
false alarm rate, causing frequent tension 
and fatigue among commanders in 
practical applications. In order to balance 
the false alarm rate and missed alarm 
rate, this system sets the classification 
confidence threshold to 0.3. 

Figure 3 shows the application effect 
of the designed sonar image target 
detection system by selecting four images 
in the test set. The visualization results 
indicate that the system has high 
detection accuracy for suspicious 
underwater targets, but may generate 
false alarms for similar objects (as shown 
in the third image). 
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Fig. 3. Detection effect of synthetic aperture sonar image test set. 

The initial model parameter size of 
the algorithm is 13.7 MB, which is 
converted to 27.3 MB. The system takes 
an average of 18 ms to process an image 
on an NVIDIA GeForce RTX 2080 
graphics card, meeting real-time 
requirements. 

4. CONCLUSION 

This article proposes a sonar image 
target detection system based on deep 
learning, which demonstrates high 
universality and satisfies critical software 
system quality attributes, such as 
portability, scalability, and ease of use. By 
leveraging the advanced capabilities of 
deep learning, the proposed system 
addresses many of the limitations of 
traditional object detection methods in 
sonar imagery, making it suitable for a 
wide range of practical applications. The 
system has been effectively applied to 
underwater suspicious target detection 
tasks, showcasing reliable detection 
performance and achieving favorable 
results on synthetic aperture sonar 
images. Experimental findings highlight 
that fine-tuning the classification 

confidence threshold is critical to 
balancing detection accuracy and 
minimizing false alarm rates. Setting the 
threshold too high may result in missed 
detections, while excessively low 
thresholds can increase false positives, 
underscoring the importance of 
parameter optimization for real-world 
deployment. Beyond its current 
applications, the proposed system holds 
significant potential for broader use in 
both civil and military missions, 
including underwater infrastructure 
inspection, maritime archaeology, search 
and rescue operations, and national 
defense. Future enhancements to the 
system could focus on integrating 
adaptive algorithms to handle dynamic 
environmental conditions, incorporating 
real-time processing capabilities, and 
expanding its utility to diverse sonar 
imaging modalities. This work 
contributes to advancing sonar-based 
object detection technology and lays a 
strong foundation for further research 
and development in this field, with the 
ultimate goal of enabling safer and more 
efficient underwater operations across 
various domains.   
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