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A B S T R A C T S  A R T I C L E   I N F O 

Water quality is a crucial concern worldwide, including 

in Nepal, where efficient monitoring is essential for safe 

drinking water and preventing waterborne illnesses. 

This study employs machine learning to analyze and 

forecast the seasonal water quality index (WQI) of 

Nepalese well water. Hybrid models with nested cross-

validation were introduced, using methods like 

CatBoost, Decision Tree, Logistic Regression, MLP-

GRU, and LSTM-GRU hybrids. Performance metrics 

included R², accuracy, and RMSE. CatBoost achieved 

the highest classification accuracy (99.35%), while the 

LSTM-GRU hybrid excelled in capturing complex 

temporal patterns. Nested cross-validation 

demonstrated 96.13% accuracy with low standard 

deviation. Additionally, SHAP analysis identified key 

predictive factors using the SVM model. This research 

highlights machine learning’s potential in predicting 

and managing water quality effectively.  
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1. INTRODUCTION 

In underdeveloped countries, a variety of 

issues affecting the water supply process 

can lead to water tap contamination. 

While machine learning techniques have 

gained popularity for making accurate 

water quality predictions, gathering the 

necessary data for modeling in 

underdeveloped nations has proven to be 

difficult (Kuroki, et al., 2023)[1]. Water 

quality is extremely important to 

humans, animals, plants, industries, and 

the environment. Water quality is 

measured through Water Quality Index 

(WQI). In this study, the parameters were 

optimized and tuned to increase the 

accuracy of numerous machine learning 

models and techniques that were used to 

measure WQI and WQC (Shams, et al., 

2024). Conversely, lakes and reservoirs 

serve as essential sources of water. These 

reservoirs play a vital role in sustaining 

life, offering clean water and supporting 

a rich diversity of aquatic ecosystems 

(Solanki, et al., 2015). Groundwater plays 

an essential role in maintaining natural 

water reserves, serving as a vital resource 

for drinking water, farming, and diverse 

industrial uses. However, industrial and 

agricultural activities greatly impact 

groundwater quality, often leading to 

contamination. This highlights the 

necessity of evaluating water quality to 

ensure safe consumption and efficient 

irrigation practices (Abbas, et al., 2014). 

To limit harmful components' access into 

water bodies, particularly rivers, timely 

monitoring and rapid decision-making 

are crucial. Conventional approaches to 

assessing water quality can occasionally 

be expensive and require significant time 

(Najafzadeh, & Basirian, 2023).  

 

 

Fig. 1. Global water dryness problem 

The analysis and prediction of water 

quality of a country or area using 

machine learning arpproach highlights a 

significant step towards utilizing 

artificial intelligence methods for water 

quality prediction and analysis making. 

An important development in the use 
of artificial intelligence for environmental 
management is the analysis and forecast 
of water quality by machine learning 
techniques. Large datasets containing 
several water quality indicators, like 
dissolved oxygen (DO), pH, temperature, 
and electrical conductivity (EC) can be 
effectively examined to find trends and 
forecast future conditions by utilizing 
machine learning techniques. This makes 
it possible to identify possible problems 
with the quality of the water early on, 
which facilitates prompt intervention and 
improved resource management. 
Additionally, machine learning reduces 
the need for labor-intensive human 
sampling and testing by improving the 
speed and accuracy of water quality tests. 
In general, a more proactive, data-driven 

https://doi.org/10.34010/injiiscom.v6i2.13396


B. Paneru et al. Analysis and Prediction of Seasonal Water Quality of Nepal...| 168 

 

 

 
DOI: https://doi.org/10.34010/injiiscom.v6i2.13396  
p-ISSN 2810-0670 e-ISSN 2775-5584 

approach to guaranteeing safe and 
sustainable water supplies is encouraged 
by the incorporation of machine learning 
into water quality analysis. Previously 
various works are carried out in field of 
water and few countries-based research 
used Machine Learning techniques for 
predictions. Many research like (Kuroki, 
et al., 2023; Shams, et al., 2024; Solanki, et 
al., 2015; Abbas, et al., 2024; Najafzadeh, 
& Basirian, 2023; Rahat, et al., 2023; 
Anand, et al., 2023; Perumal, et al., 2023) 
indicate huge research gap for the 
prediction and analysis for WQI for 
Nepal. 

We used LightGBM, Random Forest 
(RF), and Support Vector Machine (SVM) 
and, which are based on both tap water 
quality and water source data collected 
by the government of Nepal. 
Additionally, logistic regression (LR) was 
employed to forecast E. coli 
contamination in water taps. By utilizing 
input data derived from the pseudo-
pipeline network, SVM demonstrated 
solid performance, achieving an accuracy 
of 70% across 26 cities and 79% across 25 
cities when Kathmandu was excluded. 
LR's accuracy was much lower for all 
cities (61%) than for 25 cities (79%) 
(Kuroki, et al., 2023) [1]. The dataset used 
in this investigation has 1991 cases and 7 
characteristics. Furthermore, five 
assessment measures were used to 
evaluate the effectiveness of the 
classification approaches: precision, F1 
score, recall, accuracy, and Matthews' 
Correlation Coefficient (MCC). The 
performance of the regression models 
was evaluated using four metrics: Mean 
Absolute Error (MAE), Median Absolute 
Error (MedAE), Coefficient of 
Determination (R²), and Mean Square 
Error (MSE). Regarding classification, the 

testing results indicated that the GB 
model delivered the highest 
performance, predicting WQC values 
with an impressive accuracy of 99.50%. 
According to the experimental findings, 
the MLP regressor model surpassed the 
other regression models, reaching an R² 
value of 99.8% in forecasting WQI values 
(Shams, et al., 2024). Using the WEKA 
software, we processed secondary data 
provided by a third party concerning the 
Chaskaman River located near Nasik, 
Maharashtra, India. The research 
revealed that unsupervised deep learning 
methods demonstrated higher accuracy 
compared to supervised learning 
approaches. The results demonstrate that 
denoising autoencoders and deep belief 
networks can attain robustness and 
effectively handle data unpredictability 
(Solanki, et al., 2015).  

Various machine learning classifiers 
were employed to predict the WQI, 
yielding results that show Gradient 
Boosting and Random Forest achieving 
the highest accuracies of 96% and 95%, 
respectively. SVM follows closely with a 
92% accuracy, while KNN achieves 84%, 
and Decision Trees attain 77%. 
Traditional methods of water quality 
assessment are both time-consuming and 
prone to errors. However, the application 
of artificial intelligence and machine 
learning offers a disruptive solution, 
effectively overcoming these limitations. 
The study not only aimed to predict the 
Water Quality Index (WQI) but also 
performed an uncertainty analysis of the 
models using the R-factor, providing 
valuable insights into the consistency and 
reliability of the predictions. By 
combining accurate WQI predictions 
with uncertainty assessment, this 
approach offers a more thorough 

https://doi.org/10.34010/injiiscom.v6i2.13396


169 | International Journal of Informatics Information System and Computer Engineering 6(2) (2025) 166-185 

 

DOI: https://doi.org/10.34010/injiiscom.v6i2.13396  
p-ISSN 2810-0670 e-ISSN 2775-5584 

understanding of water quality in 
Mirpurkash (Abbas, et al., 2014).  

For the Hudson River, the WQI was 
determined using Landsat 8 OLI-TIRS 
imagery and four Artificial Intelligence 
(AI) models: Evolutionary Polynomial 
Regression (EPR), Gene Expression 
Programming (GEP), M5 Model Tree 
(MT), and Multivariate Adaptive 
Regression Spline (MARS). This process 
involved analyzing 13 water quality 
parameters (WQPs)—including 
dissolved oxygen arsenic, pH, alkalinity, 
magnesium, nitrate, sulfate, turbidity, 
potassium, sodium, fluoride, hardness, 
and chloride—within the New York area. 
Initially, Multiple Linear Regression 
(MLR) models were developed to 
establish relationships between these 
WQPs and the spectral indices derived 
from Landsat 8 OLI-TIRS images. The 
most strongly correlated spectral indices 
were then selected as inputs for the AI 
models. Subsequently, the WQI was 
computed based on the measured WQP 
values (Najafzadeh, & Basirian, 2023).  

This study emphasizes predicting 
water quality through machine learning 
techniques. The approach evaluates 
water's color and overall condition to 
assess its usability for drinking or other 
purposes. Leveraging Convolutional 
Neural Networks (CNN), Keras, and 
TensorFlow, the model is trained to 
forecast water quality. Designed to be 
economical and efficient, the project 
offers a preliminary water quality 
assessment via an image processing 
application. The technique can analyze 
water samples using images from mobile 
devices and Google Earth. Furthermore, 
this paper introduces a method that 
utilizes a Long Short-Term Memory 
Network (LSTM) trained with Moderate 
Resolution Imaging Spectroradiometer 

(MODIS) satellite reflectance data, 
calibrated against Total Suspended Solids 
(TSS) measurements provided by the 
Ohio River Valley Water Sanitation 
Commission (ORSANCO). This 
methodology facilitates an in-depth 
empirical analysis and data-driven 
models capable of addressing spatial 
variability within watersheds while 
delivering reliable water quality 
predictions under uncertain conditions 
(Rahat, et al., 2023; Anand, et al., 2023).  

According to experimental data, the 
proposed model demonstrated superior 
performance in predicting extreme 
values compared to both the mechanism 
and LSTM models. This model was tested 
in the Thamirabarani River basin. The 
maximum relative errors between the 
predicted and observed values were 
7.58% for dissolved oxygen, 18.45% for 
chemical oxygen demand, and 22.25% for 
NH3─N. Regarding computational 
efficiency, the LSTM-GWO-FSO model 
developed surpassed the artificial neural 
network (ANN), recurrent neural 
network (RNN), and back propagation 
neural network (BPNN) models in 
performance (Perumal, et al., 2023). 

Our work involves prediction and 
analysis of water quality of Nepal using a 
data published in a paper. The physical 
water quality of shallow groundwater in 
the southern Kathmandu Valley was 
assessed and analyzed. During the dry 
season, temperatures vary between 15.3 
and 24.2 °C, pH levels range from 5.67 to 
8.07, electrical conductivity spans from 
230 to 2860 µS/cm, and dissolved oxygen 
levels are between 0.09 and 9.1 mg/L. In 
contrast, the wet season sees 
temperatures ranging from 19.6 to 27.3 
°C, pH levels from 5.92 to 8.3, electrical 
conductivity from 183 to 3030 µS/cm, 
and dissolved oxygen between 0.19 and 
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7.9 mg/L. Water Quality Index (WQI) 
maps show that areas upstream of rivers 
generally have higher water quality 
compared to those downstream. 
Locations such as Kalanki and Satdobato 
exhibit lower water quality based on the 
Nepal Drinking Water Quality Standard 
criteria (Bohara, 2016). On a older dataset 
we apply ML algorithms which might not 
be so, much relative to present water 
quality context of country still, it makes a 
huge effect in fulfilling a research gap 
underlying in water quality prediction 
and analysis using AI based techniques 
(Pant, 2011). The results presented in the 
paper can be used for useful future 
analysis of water quality of Nepal, using 
ML based approach and apply AI based 
techniques for environmental 
sustainability. 

2. METHOD 
2.1. Data Collection 

The dataset used in this study was 
obtained from a publication that 
provided detailed water quality 
measurements from various wells across 
Nepal. The dataset included parameters 
such as Total Hardness, Arsenic Content, 
Iron Content, Nitrate, Ammonia, Total 
Coliform Count, pH, Temperature, 
Turbidity, Conductivity, and Chloride 
Content. 

2.2. Data Preprocessing 

The dataset was highly imbalanced, 
with certain water quality categories 
underrepresented and a high imbalance 
was seen on data. To address this, 
SMOTE was applied to balance the data. 
The data was then split into training and 
testing sets for model evaluation. 

 

2.3. Feature Selection 

Feature selection was performed to 
identify the most relevant parameters for 
WQI prediction and classification. This 
step involved statistical analysis and 
correlation studies to ensure that the 
selected features contribute significantly 
to the model's performance. 

 

2.4. Regression Algorithms for WQI 
Prediction 

Various regression algorithms were 
explored, including: 

 Random Forest Regression 
 Support Vector Regression (SVR) 
 Decision Tree Regression 
 Linear Regression 
 Gradient Boosting Regression 

2.5. Linear Regression 

Linear Regression is a statistical 
technique employed to represent the 
relationship between a dependent 
variable, y, and one or more independent 
variables, X. 

2.6. Decision Tree Regression 

Decision Tree Regression uses a tree-
like model of decisions and their possible 
consequences to predict a continuous 
target variable. The tree splits the dataset 
into subsets based on the feature values. 

Equation: 

A decision tree does not have a single 
equation but rather a set of if-then-else 
decision rules.  
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2.7. Gradient Boosting Regression 

Gradient Boosting Regression creates 
an ensemble of trees in a sequential 
manner, with each new tree aimed at 
correcting the mistakes of the previous 
ones. By adding trees that fit the negative 
gradient of the loss function, it works to 
minimize the loss. 

2.8. Support Vector Regression (SVR) 

Support Vector Regression (SVR), a 
variation of Support Vector Machine 
(SVM), is designed for regression tasks 
(Vörösmarty, et al., 2010; Wang & 
Nguyen, 2017). Its goal is to identify a 
function that deviates no more than ϵ 
from the actual target values for all 
training data, while remaining as flat as 
possible (Sun, et al., 2017; Ghahramani, 
2015). 

2.9. Classification Algorithms for Water 
Quality Classification 

For the classification of water quality, 
the following algorithms were used: 

 Logistic Regression 

Logistic Regression is a statistical 
technique used to solve binary 
classification problems. It predicts the 
likelihood that a given input belongs to a 
specific class by utilizing the logistic 
function. 

 Decision Tree Classifier 

A Decision Tree Classifier 
classifies data into various 
categories using a tree-like model 
of decisions and their potential 
outcomes. It divides the dataset 
into subsets based on feature 
values. 

 Random Forest Classifier 

Random Forest Classifier is an 
ensemble method that generates 
multiple decision trees during the 
training phase and classifies by 
selecting the most frequent class 
across all trees. 

 

 Gradient Boosting Classifier 

The Gradient Boosting Classifier 
constructs an ensemble of trees in 
sequence, where each new tree 
corrects the errors made by the 
previous ones by minimizing a 
loss function. 

 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is 
a supervised learning model 
applied to classification tasks. It 
identifies the hyperplane that best 
divides the classes in the feature 
space. 

 Neural Networks (Multi-Layer 
Perceptron) 

The Multi-Layer Perceptron 
(MLP) is a type of feedforward 
artificial neural network (ANN) 
with multiple layers of nodes. 
Each node, or neuron, performs a 
mathematical function. 

 LSTM-GRU hybrid model:  
The LSTM-GRU Hybrid Model 
merges the advantages of both the 
Long Short-Term Memory (LSTM) 
and Gated Recurrent Unit (GRU) 
architectures for processing and 
classifying sequential data. 
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 MLP-GRU hybrid model:  
The MLP-GRU Hybrid Model is a 
sequential neural network that 
merges the advantages of 
recurrent layers with fully 
connected dense layers to enhance 
feature extraction and 
classification. It combines the 
layers of Multi-Layer Perceptron 
(MLP) and Gated Recurrent Unit 
(GRU). 

Performance metrics such as accuracy, 
precision, recall, F1-score, and support 
were used to evaluate the classification 
models. 

2.10. Evaluation metrices 

A confusion matrix is a table utilized to 
evaluate the performance of a 
classification model. It presents a 
summary of the counts for true positives 
(TP), true negatives (TN), false positives 
(FP), and false negatives (FN). This 
matrix simplifies the understanding of 
the various types of errors made by the 
model (Rezaie-Balf, et al., 2020; Zhao, et 
al., 2021). 

 
Table 1. Evaluation Metrics. 

 Predicted 

Positive 

Predicted 

Negative 

Actual 

Positive 

TP FN 

Actual 

Negative 

FP TN 

  

 

 

Accuracy: 

Accuracy: The accuracy is determined by 

taking the percentage of all forecasts that 

were correct. Despite being a commonly 

used statistic for classification systems, 

misleading results may arise from an 

imbalanced dataset. 

 
Accuracy = 

𝑇𝑃+𝑇𝑁

(𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑃)
…………..Equation 2. 

Precision: 
Positive predictive value is another 
name for precision, which is the ratio of 
real positive forecasts to all positive 
predictions. It displays how accurately 
the model forecasted the positive results. 
 

Precision=
𝑇𝑃

(𝐹𝑃+𝑇𝑃)
 ……….Equation 8. 

 
Sometimes called sensitivity or true 
positive rate, recall measures the 
proportion of real positive cases that the 
model correctly identified. It 
demonstrates how effectively the model 
can represent commendable cases. 
 

Recall =  
𝑇𝑃

(𝐹𝑁+𝑇𝑃)
………………Equation 9. 

F1-Score 

Sometimes called sensitivity or true 
positive rate, recall measures the 
proportion of real positive cases that the 
model correctly identified. It 
demonstrates how effectively the model 
can represent commendable cases. 
 

F1 Score=2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

…………Equation 3. 
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2.11. Water Quality evaluation 

features 

Electrical conductivity (EC): 
 
The electrical conductivity (EC) of water, 
which measures its ability to conduct 
electricity, is closely related to the 
concentration of dissolved ions within it. 
Elevated EC values suggest elevated 
concentrations of dissolved salts and 
minerals, perhaps signaling 
contamination or pollution 
(Mohammadpour, 2015; Tung & Yaseen 
2020). High EC can have an impact on the 
suitability of local and well water for 
industrial, agricultural, and drinking 
purposes. Because many aquatic 
creatures are sensitive to variations in ion 
concentration, it may also have an effect 
on aquatic ecosystems. In order to 
determine the overall salinity of the water 
and make sure it satisfies the 
requirements for its intended usage, EC 
monitoring is crucial. 
 
pH: 
 
The pH scale ranges from 0 to 14, with 7 
being neutral, and it measures the acidity 
or alkalinity of water. Water with a pH 
below 7 is classified as acidic, while water 
with a pH above 7 is deemed alkaline. 
The pH level of local and well water is 
significant because it affects chemical 
reactions within the water and the 
solubility of various pollutants. For 
instance, acidic or low pH water can 
make heavy metals more soluble, 
increasing their availability and potential 
toxicity to humans and aquatic life. On 
the other hand, precipitation of minerals 
caused by high pH (alkaline water) can 
block pipes and decrease the 
effectiveness of water distribution 
systems.  
 

Dissolved Oxygen (DO): 
 
The phrase "dissolved oxygen" (DO) 
refers to the amount of oxygen present in 
water, typically measured in milligrams 
per liter (mg/L). DO is a crucial indicator 
of aquatic ecosystem health, as oxygen is 
essential for the survival of most aquatic 
organisms, such as fish and invertebrates. 
When DO levels drop too low, hypoxic 
conditions can occur, which may stress or 
even lead to the death of aquatic life. 
Adequate DO levels are required in well 
and local water quality to inhibit the 
growth of anaerobic bacteria, which can 
result in toxic byproducts and unpleasant 
odors. Monitoring DO contribute to 
maintaining the health of water bodies 
and their ability to sustain a variety of 
thriving ecosystems. 
 
2.12. Temperature 
 
One important factor affecting water 
quality that affects both the chemical and 
biological processes in the water is 
temperature. The temperature of both 
local and well water affects the solubility 
of gases, such as oxygen, and the 
metabolic rates of aquatic organisms 
(Sharma, et al., 2021; Elbaz, et al., 2023). 
Higher temperatures usually cause an 
increase in an organism's metabolic rate, 
which might raise its oxygen demand, 
and a decrease in the solubility of oxygen, 
which results in lower DO levels. 
Furthermore, the growth of hazardous 
algal blooms and the toxicity of certain 
contaminants can also be impacted by 
temperature.  
 

2.13. SMOTE 

Machine learning practitioners 
frequently utilize Synthetic Minority 
Over-sampling Technique (SMOTE), to 
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solve the issue of imbalanced datasets. By 
creating artificial examples for the 
minority class, it successfully balances 
the distribution of classes without just 
copying already-existing data (Elbaz, et 
al., 2023). By interpolating between 
current minority class samples that are 
near to one another in the feature space, 
SMOTE generates new instances. To 
accomplish this, choose at random a 
point on the line segment that connects a 
sample of a minority class to one of its 
closest neighbors. By offering a more 
balanced training set, SMOTE serves to 
enhance the performance of classification 
algorithms by promoting better 
generalization and reducing bias towards 
the majority class. 

Nested Cross validation 

Nested cross-validation is a 
dependable method for assessing the 
performance of machine learning models, 
particularly when hyperparameter 
tuning is necessary. It consists of two 
layers of cross-validation: the outer loop 
and the inner loop. The outer loop splits 
the data into training and testing sets, 
while the inner loop performs the 
hyperparameter tuning on the training 
data (Du, et al., 2023). This tiered 
technique ensures that the 
hyperparameter tuning procedure does 
not affect the evaluation results, which 
aids in delivering an objective assessment 
of the model's performance. 
 

 

Fig. 2. Class distribution before 
SMOTE 

 

Fig. 3. Cass distribution after SMOTE 

 

Fig. 4. Class volume before and after 
SMOTE 

We can see the classes distribution 
from the above pie chart, after label 
encoding the corresponding class labels 
are represented in numerical 
representations. After SMOTE nearly 800 
rows of data including 5 columns were 
formed for both regression and 
classification purpose. The both season 
data were included for training various 
models and on small dataset model 
performance were to be analyzed. 

https://doi.org/10.34010/injiiscom.v6i2.13396


175 | International Journal of Informatics Information System and Computer Engineering 6(2) (2025) 166-185 

 

DOI: https://doi.org/10.34010/injiiscom.v6i2.13396  
p-ISSN 2810-0670 e-ISSN 2775-5584 

Table 2. Nested Cross Validation 

Class Label encoded 

representation 

Average 0 

Good  1 

Poor 2 

 

Water Quality Index 

Water Quality Index (WQI) is a 
quantitative measure that reflects the 
overall quality of water based on various 
physical, chemical, and biological 
parameters. It is designed to simplify the 
representation of complex water quality 
data by aggregating multiple parameters 
into a single numerical value. The 
calculation of the Water Quality Index 
(WQI) typically involves parameters like 
temperature, pH, turbidity, dissolved 
oxygen, and the concentrations of various 
pollutants. Environmental agencies and 
water resource managers commonly use 
the resulting index to evaluate and 
compare the quality of various water 
sources, track pollution trends, and make 
informed decisions related to water 
treatment and environmental protection. 
A higher WQI indicates better water 
quality, while a lower WQI signals poorer 
quality, potentially posing risks to 
human health and aquatic life. 

𝑊𝑄𝐼 =
∑𝑄𝑖⋅𝑊𝑖

∑𝑊𝑖
……………………..Equation 4. 

SHAP analysis: 

A machine learning technique called 
SHAP (SHapley Additive exPlanations) 
analysis offers comprehensible insights 

into model predictions. It uses ideas from 
game theory, particularly Shapley values, 
to calculate how much each feature 
contributes to a prediction. Each feature 
is given an importance value by SHAP, 
which indicates how much it influences 
the model's output for a given instance. 
Its ability to comprehend the behavior of 
the model, maintain transparency, and 
pinpoint which features influence 
predictions makes it an effective tool for 
debugging and model interpretation. 

3. RESULTS AND DISCUSSION 

3.1. Regression Results 

The regression models' performance was 
assessed using various evaluation 
metrics. Among them, the Random Forest 
Regression model stood out with the 
highest accuracy, boasting an R² score of 
0.92, which reflects a strong correlation 
between the predicted and actual WQI 
values for water quality classification. 

 

Fig 5. Confusion matrix for SVM 

Overally, the confusion matrix for 
SVM shows a good performance on 
different classes, 42 samples our of 44 
distributions were correctly predicted as 
class 0 and similarly, 50 out of 58 were 
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correctly predicted as class 1 and finally, 
51 distributions were predicted correctly 
for class 2 with no incorrect predicted 
results on any of the classes.  

Logistic Regression 

Training Accuracy: 93.10% 

Testing Accuracy: 93.46%

 

Fig. 6. LR classified confusion matrix 
plot 

Similar results were seen for logistic 
regression in which, 42 out of 44 samples 
were predicted for class ‘0’ and 50 out of 
58 were predicted correctly for class ‘1’ 
and finally, 51 were the totally correct 
predictions as seen in class ‘2’ for our 
models development. 

Decision Tree 

 Training Accuracy: 100.00% 

 Testing Accuracy: 98.69% plot

 

Fig. 7. Decision tree confusion matrix 
plot 

In the decision tree algorithm the 44 
predicted distributions among the whole 
were totally correct predicted for class ‘0’ 
and similarly, 56 out of ‘58’ samples were 
predicted correctly for class ‘1’ and 
finally, 51 were correctly predicted on 
total 51 distributions on the dataset. 

Catboost: 

 Training Accuracy: 100.00% 

 Testing Accuracy: 99.35% 

 

Model confusion matrix results 

 

Fig. 8. Catboost confusion matrix plot 

In the decision tree algorithm the 44 
predicted distributions among the whole 
were totally correct predicted for class ‘0’ 
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and similarly, 57 out of ‘58’ samples were 
predicted correctly for class ‘1’ and 
finally, 51 were correctly predicted on 
total 51 distributions on the dataset. 

 

MLP (Multi-layer Perceptron) 

 Training Accuracy: 98.03% 

 Testing Accuracy: 96.73% 

 

Fig. 9. MLP (ANN ) confusion matrix 
plot 

Trained for 50 epochs In the MLP deep 
learning results the ‘41’ out of the 44 
predicted distributions were totally 
correct predicted for class ‘0’ and 
similarly, 56 out of ‘58’ samples were 
predicted correctly for class ‘1’ and 
finally, 51 were correctly predicted on 
total 51 distributions on the dataset. 

 

MLP-GRU results 

 Training Accuracy: 99.18% 

 Testing Accuracy: 96.73% 

 

Fig. 10. MLP-GRU confusion matrix 
plot 

A hybrid model MLP-GRU was 
developed and tested on the dataset 
indicating a very good performance as 
shown in above confusion matrix plot, 43 
out of 44 were correctly precited similary, 
54 out of 58 were correct predictions for 
class 1 and class 2 was predicted correctly 
for whole distributions in the testing set. 

The models' performance in 
classification was assessed by calculating 
their accuracy scores on training and 
testing datasets. With training and testing 
accuracies of 93.10% and 93.46%, 
respectively, the Logistic Regression 
model demonstrated strong performance 
and a high degree of generalizability to 
new data. The Decision Tree model 
showed near-perfect accuracy (98.69%) 
on the testing set and perfect accuracy 
(100.00%) on the training set, indicating 
possible overfitting. With a testing 
accuracy of 99.35%, the CatBoost model 
surpassed the others, demonstrating its 
dependability and efficiency for this 
classification assignment.  

 
High accuracy was also attained by the 

Multi-Layer Perceptron (MLP) model, 
which had testing and training accuracy 
of 96.73% and 98.03%, respectively. The 
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MLP-GRU hybrid model demonstrated 
competitive performance with training 
and testing accuracies of 96.06% and 
96.73%, respectively, merging dense 
layers with GRU (Gated Recurrent Unit) 
layers. 

Fig. 11. MLP-GRU Model training 
history 

 
Fig. 12. MLP-GRU hybrid Model loss 

history 

We can see that model training is 
increasing along with validation 
performance and on validation inclidated 
by orange curve on plot, the loss is 
decreasing linearly. The model was 
trained for 100 epochs and evaluated for 
performance. The result yields model 
great potentiality in predicting water 
quality and in real world applications 
development. 

Table 3. Nested Cross validation results 

Test Run Accuracy (%) 

1 96.1039 

2 98.7013 

3 94.7368 

Test Run Accuracy (%) 

4 97.3684 

5 97.3684 

6 98.6842 

7 97.3684 

8 94.7368 

9 96.0526 

10 97.3684 

Mean Accuracy 96.8489 

Standard Deviation 1.3413 

 

The table displays the outcomes of a 
model's evaluation through 10 separate 
test runs, utilizing nested cross-
validation. 96.10%, 98.70%, 94.74%, 
97.37%, 97.37%, 98.68%, 97.37%, 94.74%, 
96.05%, and 97.37% are the accuracy 
values attained in each run. The model's 
average performance is shown by the 10 
runs' mean accuracy of 96.85%. 
Furthermore, the accuracy scores' 
variability is demonstrated by the 
standard deviation of 1.34%, which 
indicates how consistently the model 
performs across various data splits. The 
model's performance appears to be fairly 
consistent, with minimal variance 
between test runs, as indicated by the low 
standard deviation, which supports the 
validity of the model's predictions. 

 
Table 4. Accuracy Comparison for 

Classification Models 
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Model Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

Logistic 

Regression 

93.10 93.46 

Decision 

Tree 

100.00 98.69 

CatBoost 100.00 99.35 

MLP 98.03 96.73 

MLP-GRU 99.18 96.73 

3.2. Regression Results 
 Decision tree regressor:  

 Training RMSE: 0.00 

 Training R-squared: 1.00 

 Testing RMSE: 1.95 

 Testing R-squared: 0.99......... 

 

Fig. 13. Decision tree regressor actual vs 
predicted result 

Linear regression 

 Training RMSE: 3.23 

 Training R-squared: 0.97 

 Testing RMSE: 2.95 

 Testing R-squared: 0.97 

 

Fig. 14. Linear Regression (actual vs 
predicted plot) 

LSTM-GRU regressor 

 Training RMSE: 2.61 

 Training R-squared: 0.98 

 Testing RMSE: 2.43 

 Testing R-squared: 0.98 

 

Fig. 15. LSTM-GRU (actual vs predicted 
result) 

For this hybrid model above shown, is 
a scatter plot, for actual vs predicted 
results in LSTM-GRU model which is 
commonly used to evaluate a regression 
model's performance, is shown, showing 
the relationship between the actual and 
projected values from a testing dataset. 
The predicted values produced by the 
model are displayed on the y-axis, while 
the x-axis displays the actual values. A 
visual comparison of the model's 
performance is made possible by the 
green dots on the plot, each of which 
represents a pair of actual and anticipated 
values. The situation when the 
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anticipated values exactly match the 
actual values is represented by an ideal 
line, which is dashed purple in color (i.e., 
the perfect prediction line where 
predicted = actual).  
 

The model performs better the closer 
the green dots are to this ideal line. The 
majority of the data points overlap along 
this line, demonstrating a significant 
connection between the actual and 
anticipated values, suggesting that the 
model predictions are fairly accurate. 
Deviations from this line would indicate 
model performance deviations or forecast 
errors. 
 
 
Hyperparameters used: 
 
 
The performance of regression models 
was assessed using metrics such as R2 
(Coefficient of Determination) and RMSE 
(Root Mean Squared Error). The Decision 
Tree Regressor, exhibiting an RMSE of 
0.00 and an R2 of 1.00 on the training set, 
showed a perfect fit. It also maintained 
strong performance on the testing set, 
achieving an RMSE of 1.95 and an R2 of 
0.99.  
 
This shows that generalization is still 
good but slightly overfitted. The Linear 
Regression model delivered excellent 
results, with training and testing R2 
scores of 0.97 and RMSE values of 3.23 
and 2.95, respectively, indicating a strong 
correlation between the predicted and 
actual values. Meanwhile, the LSTM-
GRU hybrid regressor showed its ability 
to capture complex temporal 
dependencies in the data, achieving R2 
scores of 0.98 and RMSE values of 2.61 
and 2.43 for training and testing. These 

impressive results were achieved 
through both models. 

 

 

 

 

 

Table 5. Different model 
hyperparameters used 

Model 

Type 

Hyperparameters 

SVM kernel='linear', C=0.001 

MLP hidden_layer_sizes=(100, 

50), max_iter=500, 

random_state=42 

Dense 

Neural 

Networ

k 

Dense(100, 

activation='relu'), Dense(50, 

activation='relu'), 

Dense(len(label_encoder.cla

sses_), activation='softmax'), 

optimizer='adam', 

loss='sparse_categorical_cro

ssentropy', 

metrics=['accuracy'] 

Rando

m 

Forest 

Regress

ion 

n_estimators=100, 

max_depth=10, 

min_samples_leaf=3, 

random_state=42 

LSTM-

GRU 

LSTM(50, 

return_sequences=True), 

GRU(50, activation='relu'), 

optimizer='adam', 

loss='mse', 
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Model 

Type 

Hyperparameters 

EarlyStopping(monitor='val

_loss', patience=5) 

MLP-

GRU 

Dense(100, 

activation='relu'), Dense(50, 

activation='relu'), GRU(50, 

activation='relu'), 

Dense(len(label_encoder.cla

sses_), activation='softmax'), 

optimizer='adam', 

loss='sparse_categorical_cro

ssentropy', 

metrics=['accuracy'] 

Other 

models 

(No hyperparameters were 

found necessary) 

 
The various hyperparameters can be 

observed as in table above, the 
hyperparameters applied on the model 
development was essential for building 
more accurate models for predictions.  

Table 6. Regression Models 
Performance Comparison 

Model Train

ing 

RMS

E 

Train

ing 

R² 

Testi

ng 

RMS

E 

Testi

ng 

R² 

Decisio

n Tree 

0.00 1.00 1.95 0.99 

Linear 

Regres

sion 

3.23 0.97 2.95 0.97 

LSTM-

GRU 

2.61 0.98 2.43 0.98 

 

3.3. Impact of SMOTE 

The application of SMOTE significantly 
improved the performance of the 
classification models by addressing the 
class imbalance issue. The balanced 
dataset led to more accurate and reliable 
classification results.  

3.4. Seasonal Variation Analysis 

After a comprehensive review of paper 

(Bohara, 2016) various analysis can be 

made on water quality context of the 

capital city, Kathmandu, Nepal. As we 

analyzed the dataset created our review 

study looked at dissolved oxygen (DO), 

pH, temperature, electrical conductivity 

(EC), and other water quality 

characteristics in groundwater from wells 

that were excavated in the southern 

Kathmandu Valley. Below is a thorough 

analysis of the findings: 

Temperature: The groundwater's 

temperature was discovered to be within 

a range that is thought to be typical for 

the area, suggesting that it is favorable for 

microbial development. The water's 

ambient temperature indicates that it is 

neither excessively hot or cold, which is 

ideal for preserving a balanced aquatic 

ecology and is normally suitable for 

residential usage. 

pH 
The groundwater's average pH was quite 
basic. On the other hand, the northwest of 
the research region and Hanumante 
Khola showed acidic pH levels. The 
corrosion of plumbing systems and 
pipelines caused by acidic water poses a 
threat to water safety and infrastructure 
upkeep. In general, the slightly basic pH 
in other locations is suitable for domestic 
use. 
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Total Quality and Adherence 
The majority of the measured values fell 
between the permitted ranges established 
by the World Health Organization 
(WHO) and Nepal's National Drinking 
Water Quality Standards (NDWQS). 
There was minimal fluctuation observed 
in the Water Quality Index (WQI) maps 
for all seasons, suggesting consistent 
physical water quality parameters all 
year round. 
 
Recommendations  

 
Although most of the study area's 

groundwater is adequate for domestic 
and agricultural usage, some regions 
need special treatment: 

pH correction in Nakhu Khola EC 
control in some Kalanki Area wells DO 
enhancement in the majority of river 
sections upstream 
 
3.5. SHAP Analysis results 

 
Fig. 16. SHAP analysis plot result 

 
The SHAP (SHapley Additive 

exPlanations) analysis was performed on 
SVM model and the figure 15. plot 
provides insights into how different 
features contribute to the predictions 
made by a water quality model. In this 
case, the plot showcases the average 
impact of various water quality 
parameters on the model's output across 
three different classes (Class 2, Class 1, 
and Class 0). The bars represent the mean 
absolute SHAP values for each feature, 

highlighting their importance in the 
model's decision-making process. 

 
EC: The model's most significant 

component, electrical conductivity (EC), 
is shown to be critical in establishing the 
quality categorization. It significantly 
affects the forecasts for all three classes, 
with Class 2 showing the most 
contribution (shown in green). This 
suggests that, especially for Class 2, EC 
has a significant role in differentiating the 
water quality among the classes. 
Furthermore, EC significantly affects 
Class 0 (pink) and Class 1 (blue), 
highlighting its significance in the model. 

 
DO: Another significant component 

that mostly influences the forecasts for 
Classes 0 and 2 is the amount of dissolved 
oxygen (DO) mg/L. The feature makes a 
significant contribution, especially for 
Class 0, where it is essential to the 
categorization. Although it has less of an 
effect on Class 1, DO still has a big 
influence on the model's overall 
performance. 

 
The model's predictions are 
comparatively less affected by 
temperature and pH. A little more than 
pH is contributed by temperature, which 
especially affects Class 0 and Class 1 
predictions. But when compared to EC 
and DO, the effects of these traits are 
negligible. Specifically, pH has the least 
impact, suggesting that it is not a 
significant component in differentiating 
between the various water quality classes 
in our model. 
 

This SHAP study shows that the two 
most important parameters for this 
model's prediction of water quality are 
Electrical Conductivity and Dissolved 
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Oxygen. The least significant factors are 
pH and temperature, with pH having the 
least impact. These observations, which 
highlight the most significant 
characteristics, can direct additional 
research and model improvement. 
 
3.6. Further Studies 

 
In order to obtain a thorough 
comprehension of the water quality, 
more research concentrating on chemical 
and microbiological tests is suggested. 
This will guarantee that the water is safe 
for all planned uses and assist in 
identifying any potential contaminants 
not covered by the physical 
characteristics. 
 
The study's overall findings show that 
although the groundwater quality is 
suitable for most uses, more research and 
focused treatments are required to 
guarantee that it satisfies all safety and 
quality requirements. 

3.7. Future Work 

The dataset should be enlarged in the 
future to include more comprehensive 
and varied water quality measurements 
from various locations and times of year. 
The predictive power of the model may 
be improved by adding other parameters, 
such as microbiological contaminants 
and developing pollutants. Furthermore, 
investigating deep learning models and 
sophisticated ensemble learning 
strategies may help to increase prediction 
robustness and accuracy. It may be 
possible to create machine learning 
algorithms that are connected with real-
time water quality monitoring systems to 
deliver precise and quick water quality 
assessments. Lastly, incorporating 
stakeholders and local communities in 
the process of gathering data and 

developing models helps guarantee that 
the solutions are workable and 
customized to the unique requirements of 
the various areas. 
 
4. CONCLUSION 

This study concludes by showing the 
great potential of machine learning 
methods for categorizing and forecasting 
water quality metrics. High accuracy and 
efficiency were demonstrated by the 
models, especially CatBoost and LSTM-
GRU hybrid, in completing the 
regression and classification tasks, 
respectively. Other models, such as 
Logistic Regression and MLP, 
demonstrated great generalizability by 
offering a fair balance between training 
and testing accuracy, whereas the 
Decision Tree model showed evidence of 
overfitting. The problem of data 
imbalance was successfully resolved by 
using the Synthetic Minority Over-
sampling Technique (SMOTE), which 
enhanced the performance of the models 
even further. These results highlight the 
importance of using machine learning to 
regulate water quality, providing Nepal 
and comparable regions with a promising 
means of ensuring clean drinking water 
and reducing the spread of waterborne 
illnesses. 
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