EVALUASI AKTIVITAS OPERASIONAL ANGKUTAN PENYEBERANGAN LINTAS MERAK - BAKAUHENI

Fitriyani Asoliha¹⁾, M. Donie Aulia²⁾, M. Fathoni³⁾

Jurusan Teknik Sipil, Universitas Komputer Indonesia Jl. Dipatiukur No. 112-116, Bandung, 40132, Indonesia E-mail: fitriyani asoliha@yahoo.com¹⁾

> diterima: 3 Agustus 2020 dipublikasi: 5 Oktober 2020

ABSTRAK

Pelabuhan Penyeberangan Merak dan Bakauheni merupakan dua simpul pelabuhan untuk Lintas Penyeberangan Merak – Bakauheni. Keduanya merupakan jembatan utama yang menghubungkan Pulau Jawa dan Pulau Sumatera. Penelitian ini bertujuan untuk mengevaluasi jumlah kapal yang dibutuhkan dan kinerja dermaga untuk melayani penumpang dan kendaraan di lintas Merak – Bakauheni, serta mengetahui sistem pola operasional angkutan penyeberangan di Pelabuhan Merak. Metode penelitian ini menggunakan prediksi peramalan untuk mengetahui jumlah kebutuhan kapal di masa yang akan datang dengan faktor muat angkutan penyeberangan dari segi penumpang maupun kendaraan. Analisis dalam penelitian ini adalah kinerja angkutan penyeberangan dan kinerja dermaga di lintas Merak – Bakauheni. Hasil dari penelitian ini menunjukkan bahwa setiap tahunnya terjadi penigkatan produksi penumpang dan kendaraan di Pelabuhan Merak, sehingga perlu adanya penambahan kapal dan penertiban kembali mengenai jadwal keberangkatan kapal supaya trip yang telah ditetapkan tercapai. Serta pelayanan angkutan dan penyeberangan dapat ditingkatkan dengan memberikan layanan yang lebih baik.

Kata kunci: Pelabuhan Penyeberangan, Kebutuhan Kapal, Faktor Muat.

1. Pendahuluan

Kondisi geografis Indonesia, ketidak merataan penyebaran sumber daya alam dan sumber daya manusia, serta kekuatan - kekuatan sosial ekonomi merupakan masalah nasional yang tidak mungkin terpecahkan tanpa melalui program pembangunan yang terarah dan terpadu. Sektor transportasi berperan sebagai urat nadi kehidupan sosial, ekonomi, budaya, politik serta pertahanan dan keamanan, untuk itu haruslah memiliki kemampuan yang tinggi dan diselenggarakan secara terpadu, tertib, lancar, aman, nyaman dan efisien untuk menunjang dinamik pembangunan. Peran Angkutan Sungai, Danau dan Penyeberangan (ASDP), sebagai salah satu moda transportasi di Indonesia tentulah dibutuhkan untuk waktu yang sangat jauh ke depan.

Pelabuhan Penyeberangan Merak terletak di wilayah Kecamatan Pulomerak, Kota Cilegon, Provinsi Banten, Indonesia yang berbatasan langsung dengan Selat Sunda. Pelabuhan ini terletak sekitar 125 km sebelah barat Kota Jakarta dengan letak geografis pada 05°.55'.43,5" Lintang Selatan dan 105°.59'.30,50" Bujur Timur. Dilihat dari topografinya, pelabuhan ini memiliki kondisi

topografi yang menarik karena dikelilingi oleh pegunungan, bergelombang dan berbukit-bukit. Selain dikelilingi oleh pengunungan, pelabuhan Merak ini juga berada di tepi pantai yang dibatasi dengan break water alami berupa Pulau Merak Besar, yang berada di sebelah barat. Pada Pelabuhan Merak dengan luas lahan kurang lebih 15 hektar, yang dilengkapi dengan sejumlah fasilitas utama berupa Dermaga I, II, III, IV, dan V masing-masing satu unit. Adapun Pelabuhan Penyeberangan Bakauheni adalah pelabuhan umum yang melayani penyeberangan antara Ujung Selatan Pulau Sumatera – Ujung Barat Pulau jawa, Pelabuhan Bakauheni dengan luas lahan kurang lebih 75 hektar dan batas – batas fisik kewilayahan sebelah utara dengan Kecamatan Ketapang, sebelah Timur dengan Selat Sunda, sebelah Barat dengan Kecamatan Kalianda, sebelah Selatan dengan Selat Sunda.

Pelabuhan Penyeberangan Merak (Banten) dan Bakauheni (Lampung) merupakan dua simpul (pelabuhan) untuk Lintas Penyeberangan Merak – Bakauheni. Keduanya merupakan jembatan utama yan menghubungkan Pulau Jawa dan Pulau Sumatera. Untuk mewujudkan transportasi yang

efektif dan efisien harus diarahkan untuk peningkatan pelayanan dengan mempertemukan kepentingan atau harapan baik dari sisi penyedia maupun dari sisi pengguna jasa angkutan penyeberangan.

Pada saat ini, angkutan penyeberangan pada lintas Merak – Bakauheni dilayani oleh 52 armada kapal penyeberangan dengan jumlah produktivitas penumpang pada tahun 2014 sebesar 1,652,565 orang dengan perjalanan 101 trip/ hari. Mengingat bahwa lintas penyeberangan Merak – Bakauheni memegang peranan penting dalam kelancaran arus penumpang dan kendaraan antara pulau Jawa dan Sumatera, oleh karena itu perlu dilakukannya evaluasi dan analisa terhadap pola operasional angkutan penyeberangan pada lintasan tersebut. Untuk itu dalam peneliti mengambil judul "Evaluasi Aktivitas Operasional Angkutan Penyeberangan Lintas Merak – Bakauheni".

2. Studi Literatur

2.1 Angkatan Penyebrangan

Pengertian angkutan penyeberangan laut menurut kamus bahasa indonesia mendefinisikan kapal sebagai kendaraan pengangkut penumpang dan barang di laut. Sedangkan di dalam UU pelayaran kapal didefinisikan sebagai kendaraan air dengan bentuk dan jenis tertentu yang digerakkan dengan tenaga angin, tenaga mekanik dan tenaga energi lainnya termasuk kendaraan yang berdaya dukung dinamis, kendaraan dibawah permukaan air dan bangunan terapung yang tidak berpindahpindah.

ASDP adalah singkatan dari Angkutan Sungai Danau dan Penyebrangan merupakan istilah yang terdiri dari 2 aspek yaitu Angkutan Sungai dan Danau atau ASD dan Angkutan Penyebrangan. Istilah ASDP ini merujuk pada sebuah jenis "moda" atau " jenis angkutan " dimana suatu sistem transportasi dimana suatu sistem transportasi dimana suatu sistem transportasi dimana suatu sistem transportasi terdiri dari 5 macam yaitu moda angkutan darat (jalan raya), moda angkutan udara, moda angkutan kereta api, moda angkutan pipa (yang mungkin belum dikenal luas), moda angkutan laut dan moda ASDP. Angkutan Perairan Daratan atau angkutan perairan pedalaman merupakan istilah lain dari Angkutan Sungai dan Danau (ASD).

Sementara itu, angkutan penyeberangan adalah angkutan yang berfungsi sebagai jembatan bergerak yang menghubungkan jaringan jalan dan/atau jaringan kereta api yang terputus karena adanya perairan. Dalam bahasa Inggris, moda ini

dikenal dengan istilah ferry transport. Lintas penyeberangan Merak - Bakauheni dan Palembang - Bangka bahkan juga Inggris - Perancis adalah beberapa contoh yang sudah dikenal masyarakat. Pada umumya ASDP digunakan untuk melayani mobilitas barang dan penumpang baik di sepanjang sungai atau danau dan di sepanjang lintas penyebrangan sungai dan danau. Transportasi sungai dan danau relatif murah, pemanfaatannya masih kurang terutama pada wilayah yang sudah dibangun prasarana jalan dan jembatan. Penyelenggaraannya lebih banyak oleh masyarakat dan peran pemerintah dalam investasi terutama dalam pembanguna prasarana dermaga penyebrangan sungai dan danau relatif sedikit jumlahnya.

2.2 Kapal

adalah kendaraan pengangkut penumpang dan barang di laut (sungai dsb) seperti halnya sampan atau perahu yang lebih kecil. Kapal biasanya cukup besar untuk membawa perahu kecil seperti sekoci. Sedangkan dalam istilah inggris, dipisahkan antara ship yang lebih besar dan boat yang lebih kecil. Berabad-abad lamanya kapal digunakan oleh manusia untuk mengarungi sungai atau lautan. Sedangkan menurut Pasal 1 ayat 36 UU No 17 tahun 2008 yang dimaksud dengan kapal adalah kendaraan air dengan bentuk dan jenis tertentu, yang digerakkan dengan tenaga angin, tenaga mekanik, energi lainnya, ditarik atau ditunda, termasuk kendaraan yang berdaya dukung dinamis, kendaraan di bawah permukaan air, serta alat apung dan bangunan terapung yang tidak berpindah- pindah.

Kapal Penyeberangan sebagai salah satu moda transportasi yang cukup berkembang di Indonesia merupakan bagian dari sistem transportasi nasional yang memiliki karakteristik tersendiri. Kapal Penyeberangan berdasarkan fungsinya terbagi atas 3 (tiga):

- Kapal Penyeberangan yang memuat Penumpang (Passenger)
- Kapal Penyeberangan yang memuat Kendaraan (Ro-ro)
- Kapal Penyeberangan yang memuat penumpang dan kendaraan (Ro-pax)

2.2.1 Waktu Perjalanan

Menurut Manajemen Angkutan Sungai dan Penyeberangan waktu perjalanan adalah waktu yang dibutuhkan untuk berlayar antara pelabuhan tergantung kepada jarak antara pelabuhan dan kecepatan perjalanan kapal.

$$\mathbf{T} = \frac{\mathbf{s}}{\mathbf{v}} \tag{pers.1}$$

Keterangan:

T = Waktu perjalanan dari pelabuhan awal sampai pelabuhan akhir, jam

S = Jarak antara pelabuhan awal ke pelabuhan akhir, nautical mile

V = Kecepatan jelajah kapal, knot

2.2.2 Faktor Muat Kapal

Menurut H.M.N. Nasution (1996) faktor muat kapal adalah jumlah penumpang dan kendaraan yang diangkut oleh kapal dibandingkan dengan kapasitas yang disediakan. Adapun formula yang dipergunakan untuk menentukan faktor muat tiap kapal adalah:

$$LF = \frac{KP}{KT} \times 100\%$$
 (pers.2)

Keterangan:

= Faktor Muat LF

KP = Kapasitas Terpakai

KT = Kapasitas Tersedia

2.2.3 Frekuensi Kapal

Frekuensi kapal adalah sejumlah kapal yang beroperasi sesuai dengan Manajemen Pelabuhan Penyeberangan (1998). Dapat dihitung berdasarkan jumlah penumpang sebagai berikut:

$$Frekuensl = \frac{N}{365 \times K \times LF \times M}$$
 (pers.3)

Keterangan:

FP = Frekuensi keberangkatan kapal

berdasarkan penumpang

K = Koefisien waktu operasi kapal pertahun

LF = Load Factor atau Faktor muat

M = Kapasitas angkut kapal (penumpang)

N = Jumlah penumpang naik atau turun di

dermaga pertahun

Penentuan jumlah frekuensi keberangkatan ini harus dihitung berdasarkan jumlah permintaan penumpang, kendaraan dan muatan barang di atas kendaraan secara terpisah. Dari ketiga perhitungan

tersebut, hasil perhitungan FP yang digunakan adalah nilai FP yang paling besar. Angka FP yang diperoleh kemudian harus dibulatkan ke atas.

2.2.4 Kemampuan *Trip* Kapal

Kemampuan perjalanan (trip) kapal adalah jumlah perjalanan (trip) yang dijalankan kapal dalam satuan waktu tertentu. Kemampuan perjalanan (trip) kapal dipengaruhi oleh sailing time (waktu layar) dan ship turn around time (STAT), dengan demikian rumus untuk mengetahui kemampuan trip kapal sebagai berikut:

$$KT = \frac{PortTime}{2x(Satling\ Time + STAT)} = \frac{PortTime}{2xTrip\ Time}$$
 (pers.4)

Keterangan

= Jumlah trip kapal KT

Port Time Jumlah jam operasional

pelabuhan

Sailing Time = Waktu tempuh berlayar kapal

> dalam satu kali perjalanan dalam s atuan (trip/kapal) jam penyeberangan kecepatan

tempuh

STAT = Ship Turn Around Time

Ship Turn Around Time merupakan, waktu yang dibutuhkan kapal selama di area pelabuhan sejak memasuki area perairan pelabuhan hingga akan berangkat lagi meninggalkan batas perairan. Angka yang diolah merupakan rata-rata data dari semua kapal. Nilai KT yang diperoleh kemudian harus dibulatkan ke atas.

2.2.5 Jumlah Kebutuhan Kapal

Perhitungan jumlah kebutuhan kapal untuk melayani angkutan penumpang ke Pelabuhan Bakauheni adalah sebagai berikut:

$$N = \frac{FP}{Port\ Time} x \text{ fumlah dermaga}$$
 (pers.5)

Keterangan:

= Jumlah kapal yang dibutuhkan N

= Jumlah frekuensi keberangkatan kapal Port Time= Jumlah jam operasional pelabuhan

= Jumlah dermaga

Nilai N yang diperoleh kemudian harus dibulatkan ke atas. Apabila jumlah kebutuhan kapal yang diperlukan sangat banyak dan diperkirakan tidak akan mampu dipenuhi oleh pelabuhan maka yang harus dilakukan adalah dengan menambah jumlah dermaga.

Dalam perencanaan jumlah kebutuhan kapal harus memperhatikan paling sedikit:

- a) Volume angkutan;
- b) Jumlah, besar dan kapasitas kapal;
- c) Kecepatan kapal;
- d) Jumlah dan kapasitas dermaga.

2.2.6 Headway Time

Headway dapat diartikan sebagai rentang waktu antar keberangkatan kapal yaitu perbandingan antara waktu operasional dermaga dengan jumlah keberangkatan kapal atau kebalikan dari frekuensi dan dirumuskan dengan :

2.2.7 Analisa Peramalan

Menurut Ofyar Z Tamin dalam bukunya tentang Perencanaan, Permodelan, dan Rekayasa Transportasi (2008), peramalan pengguna jasa dimasa yang akan datang dapat dilakukan dengan menggunakan metode *Compound Interst*. Prediksi jumlah angkutan dapat dihitung dengan menggunakan formula sebagai berikut:

$$\begin{array}{ll} \text{Log } V_n & = \text{Log } V_0 + n \text{ Log } (1+r) \\ V_n & = V_0 (1+r)^n \end{array} \tag{pers.7}$$

Dimana:

 V_n = Jumlah penumpang yang diramalkan V_0

= Jumlah penumpang pada tahun dasar

N = Jumlah tahun dalam ramalan tanpa tahun

dasar

r = Tingkat pertumbuhan

2.2.8 Berth Occupancy Ratio (BOR)

BOR dapat diartikan sebagai tingkat penggunaan dermaga oleh kapal yaitu perbandingan antara selisih jumlah kapal yang tiba dan menunggu dengan jumlah kapasitas tambat atau perbandingan antara jumlah kapal yang tambat dengan jumlah kapasitas tambat dirumuskan sebagai berikut:

$$BOR = \frac{(jumlah.kapal.yang.tiba - jumlah.kapal.yang.menunggu)}{Kapasitas.tambat.dermaga} x100\% \qquad \text{(pers. 8)}$$

 $BOR = \frac{(jumlah.kapal.yang.tambat)}{Kapasitas.tambat.dermaga} x100\%$

2.2.9

Optimum Number of Berth (ONB)

ONB dapat diartikan sebagai jumlah dermaga

atau kapasitas tambat dermaga yang ideal untuk kapal yaitu perbandingan antara selisih kapasitas tambat dengan jumlah kapal yang tambat dengan jumlah kapasitas tambat atau dirumuskan sebagai berikut:

2.2.10 Berth Through Put (BTP)

BTP dapat diartikan sebagai jumlah banyaknya muatan, baik kendaraan ataupun penumpang, yang melalui dermaga dalam satu tahun. BTP juga adakalanya diartikan dengan jumlah muatan yang melintasi dermaga per meter panjang dermaga atau dirumuskan sebagai berikut:

$$BTP = \frac{jumlah.mua \tan. yang.melalui.dermaga}{Panjang.dermaga}$$
 (pers. 10)

2.2.11 Equipment Occupancy Ratio (EOR)

EOR dapat diartikan sebagai tingkat penggunaan peralatan bongkar muat (movable bridge) yaitu perbandingan antara jumlah pemakaian alat bongkar muat dengan kapasitas penggunaan alat bongkar muat atau dirumuskan berikut ini :

$$EOR = \frac{jumlah \cdot pemakaian \cdot movable \cdot bridge}{Kapasitas \cdot pemakaian \cdot movable \cdot bridge} x100 \%$$
 (pers. 11)


2.2.12 Adjusting Time Ratio (ATR)

Adjusting time dapat diartikan sebagai waktu yang dibutuhkan saat ini oleh fasilitas *movable bridge* untuk menyesuaikan dengan *rampdoor* kapal hingga kendaraan siap dibongkar/muat pada saat cuaca dan kondisi normal.Makin lama durasi *Adjusting time* dapat menunjukkan makin turunnya kemampuan pelayanan fasilitas *movable bridge*.

ATR dapat diartikan sebagai rasio antara adjusting time yang dibutuhkan saat ini oleh fasilitas movable bridge terhadap waktu adjusting time yang ideal (umumnya pada saat baru dioperasikan) atau dirumuskan berikut ini:

3. Metode Penelitian

3.1 Umum

Gambar 3.1 Bagan Alir Penelitian

3.2 Perumusan Masalah

Pada tahap ini, permasalahan yang akan diteliti dirumuskan dalam bentuk pertanyaan yang akan dijawab berdasarkan hasil penelitian. Hal ini perlu dilakukan agar penelitian lebih terfokus, perumusan masalah tersebut, meliputi: darimana harus mulai, bagaimana memulainya dan dengan apa.

3.3 Studi Literatur

Studi literatur ini dilakukan dengan mempelajari teori – teori pada materi perkuliahan dan referensi lainnya dalam melakukan pendekatan teoritis sebagai referensi yang berkaitan dengan permasalahan yang ada, sebagai landasan teori maupun pedoman pelaksanaan praktek di lapangan.

3.4 Obeservasi

Pada awal penelitian dilakukan observasi yang dimaksud untuk mencari informasi yang diperlukan agar masalah yang akan diteliti menjadi jelas kedudukannya. Pada observasi ini, dikumpulkan informasi dan data sebanyakbanyaknya yang berkaitan sehingga dengan melakukan observasi ini, kendala- kendala yang mungkin akan menghambat dan mengganggu

jalannya penelitian dapat segera diantisipasi. Maka, dilakukanlah identifikasi permasalahan mengenai kondisi operasional angkutan penyebrangan lintas Merak - Bakauheni dan sarana pelayanan yang ada masih belum memadai.

3.5 Metode Pengumpulan Data

Metode – metode yang digunakan penulis dalam pengumpulan data untuk penulisan skripsi ini yaitu pengumpulan data berupa data sekunder.

3.5.1 Pengumpulan Data

Setelah ditentukan data apa yang akan dikumpulkan, dari mana data tersebut dapat diperoleh dan dengan cara apa, maka langkah selanjutnya adalah proses pengumpulan data (data collecting). Kegiatan pengumpulan data dalam penelitian ini dibantu oleh beberapa orang surveyor, yang sebelumnya telah memahami maksud dan tujuan penelitian, data yang dibutuhkan serta teknik survei yang digunakan.

3.5.2 Pengumpulan Data Sekunder

Metode ini bertujuan mengumpulkan data – data sekunder yang terkait dengan penelitian tersebut. Data sekunder merupakan sumber data penelitian yang diperoleh peneliti secara tidak langsung melalui media perantara (diperoleh dan dicatat oleh pihak lain). Data sekunder umumnya berupa bukti, catatan, atau laporan historis yang telah tersusun dalam arsip (data dokumenter) yang dipublikasikan maupun tidak dipublikasikan. Dalam penelitian ini, metode dalam mendapatkan data sekunder dilakukan dengan cara berkoordinasi dengan instansi – instansi terkait seperti :

- Dinas Perhubungan Komunikasidan Informatika Provinsi Banten:
- Badan Perencanaan Daerah Provins Banten
- Badan Pusat Statistik Provinsi Banten;

Adapun jenis data yang didapat, meliputi:

- a. Data jarak Pelabuhan Merak Pelabuhan Bakauheni.
- b. Karakteristik kapal dan Operasional Kapal

Tabel 1 Kebutuhan dan Ketersediaan Data

No.	Jenis Data	Sumber Data
1	Data Jumlah Kapal	Operator Kapal
2	Data Karakteristik Kapal dan Operasional	Dinas Perhubungan dan Informatika Provinsi Banten
3	Data Jarak Pelabuhan Merak menuju Pelabuhan Bakauheni	OPP Merak
4	Data Produktivitas Penyeberangan Lintas Merak - Bakauheni	OPP Merak

3.6 Metode Analisis Data

Berdasarkan hasil survey, dilakukan upaya penyusunan data melalui sistem kompilasi data. Data kompilasi ini akan menjadi bahan dasar dalam melakukan kegiatan berikutnya, yaitu analisis permasalahan, potensi dan kebutuhan pengembangan. Metoda analisis data yang dipergunakan dalam penelitian ini adalah sebagai berikut:

- 1. Mengelompokan data dan informasi menurut kategori aspek kajian seperti : data kependudukan, data kebijakan, dll
- 2. Mendetailkan desain pengolahan dan kompilasi data dari desain studi awal sehingga tercipta form-form isian berupa tabel-tabel.
- 3. Mengisi dan memindahkan data yang telah tersortir ke dalam tabel-tabel isian.
- 4. Melakukan pengolahan data berupa penjumlahan, pengalian, pembagian, prosentase dan sebagainya baik bagi data primer maupun sekunder.

Analisa yang digunakan dalam penelitian ini adalah sebagai berikut:

1. Analisis Peramalan

Peramalan pada dasarnya merupakan suatu perkiraan untuk jangka waktu yang akan datang dengan menggunakan teknik tertentu. peramalan pengguna jasa dimasa yang akan datang dapat dilakukan dengan menggunakan metode *Compound Interst*.

- 2. Analisis Faktor Muat Kapal Faktor muat adalah jumlah produksi angkutan yang dapat diangkut oleh kapal dibandingkan dengan kapasitas yang disediakan.
- 3. Analisis Frekuensi Keberangkatan Kapal Untuk mengetahui jumlah frekuensi keberangkatan kapal sangat ditentukan dari jumlah permintaan kapal penumpang.
- 4. Analisis Jadwal Pengoperasian Kapal Dalam pengaturan jadwal keberangkatan kapal

- berdasarkan waktu tempuh berlayar kapal dalam satu kali perjalanan, waktu bongkar muat kapal selama di pelabuhan, kemampuan trip kapal dan jumlah kapal.
- 5. Analisis Kinerja Angkutan Penyebrangan Tahapan ini dimaksud untuk meneliti bagaimana kinerja angkutan penyebrangan tersebut, adapun hal hal yang perlu diketahui pada tahapan ini yaitu seperti;
 - a. Analisis Berth Occupancy Ratio(BOR)
 Analisis tingkat penggunaan dermaga oleh
 kapal yaitu perbandingan antara selisih
 jumlah kapal yang tiba dan menunggu.
 - b. Analisis Optimum Number of Berth(ONB) Analisis jumlah dermaga atau kapasitas tambat dermaga yang ideal untuk kapal.
 - c. Analisis Berth Through Put (BTP)
 Analisis jumlah banyaknya muatan, baik
 kendaraan ataupun penumpang, yang
 melalui dermaga dalam satu tahun.
 - d. Analisis Equipment Occupancy
 Ratio(EOR)

 Analisis tingkat penggunaan peralatan
 bongkar muat (movable bridge) yaitu
 perbandingan antara jumlah pemakaian alat
 bongkar muat dengan kapasitas
 penggunaan alat bongkar muat
 - e. Analisis Adjusting Time Ratio (ATR)
 Analisis waktu yang dibutuhkan saat ini
 oleh fasilitas movable bridge untuk
 menyesuaikan dengan rampdoor kapal
 hingga kendaraansiap dibongkar/muat pada
 saat cuaca dan kondisi normal.
 - f. Analisis Berth Idle Time (BIT)
 Analisis jumlah waktu dermaga dalam keadaan kosong karena tidak digunakan oleh kapal untuk sandar, bongkar/muat dan lainnya.

4. Hasil Analisis

4.1Analisis Karakteristik Angkutan Penyeberangan

4.1.1 Penumpang

Berikut data penumpang kapal penyeberangan lintasan Merak – Bakauheni pada tahun 2014 yang di lihat dari jumlah penumpang pejalan kaki dan jumlah penumpang di atas kendaraan.

Tabel 2 Hasil Analisis Penumpang Kapal Penyeberangan di Pelabuhan Merak Pada Tahun 2014

Bulan	Siang	Malam
Januari	65,964	52,008
Februari	45,143	35,088
Maret	53,161	43,401
April	47,754	40,041
Mei	52,548	43,916
Juni	52,461	43,439
Juli	95,091	98,674
Agustus	63,202	47,109
September	59,416	50,460
Oktober	58,470	52,694
November	59,321	50,683
Desember	67,016	58,451

4.1.2 Data Jenis Kendaraan

Berikut data tabel produksi kendaraan kapal penyeberangan lintansan Merak - Bakauheni pada tahun 2014

Tabel 3 Hasil Analisis Jenis Kendaraan Kapal Penyeberangan di Pelabuhan Merak – Bakauheni Pada Tahun 2014

		Siang			
No	Bulan	Roda Dua	Roda Empat	Bus	Truk
1	Januari	10,990	28,860	10,206	19,503
2	Februari	8,686	20,369	8,895	17,080
3	Maret	10,448	25,199	10,229	19,272
4	April	8,921	22,578	10,256	17,519
5	Mei	10,106	26,045	11,680	21,480
6	Juni	9,512	27,165	11,176	22,549
7	Juli	30,145	52,735	10,405	18,592
8	Agustus	13,817	43,652	10,828	20,345
9	September	12,828	30,825	10,459	19,543
10	Oktober	11,907	27,325	11,147	20,878
11	November	12,736	30,475	10,528	19,676
12	Desember	11,196	32,306	11,714	19,155
Tota	.1	151,292	367,535	127,524	235,592

Malam				
Roda Dua	Roda Empat	Bus	Truk	
8,023	32,281	18,235	18,317	
6,118	26,217	17,078	18,360	
9,246	29,941	17,744	19,853	
8,658	27,830	18,044	20,268	
9,667	31,593	19,454	20,185	
8,508	34,048	19,517	20,322	
53,815	58,562	16,159	16,013	
10,644	45,971	17,816	19,118	
14,335	35,805	18,006	19,055	
12,219	35,489	19,563	19,801	
14,123	35,774	18,162	19,129	
13,185	39,041	18,845	19,679	
168,541	432,552	218,622	230,100	

4.2 Analisis Kesenjangan Karakteristik Kapal

Kesenjangan karakteristi kapal dapat dilihat dari umur kapal tersebut, berat kotor kapal itu sendiri (*Gross Requirement Ton /* GRT) dan kapasitas angkutnya dari kapasitas angkut penumpang dan kapasitas angkut kendaraan.

Pada tahun 2014 jumlah kapal yang melayani penyeberangan lintas Merak – Bakauheni ada 52 kapal.

Berdasarkan data kapal yang ada dapat diperoleh umur rata – rata, minimum dan maksimum kapal. Hasil dapat dilihat sebagai berikut:

Tabel 5 Hasil Analisis Umur Kapal (Tahun)

Uraian Umur	Tahun
Rata – rata	28
Maksimum	43
Minimum	4

Tabel 6 Hasil Analisis Distribusi Kapal Berdasarkan Umur

Selang Umur Kapal	Unit	Persen		
4 - 17	1	2%		
18 - 30	35	67%		
31 - 43	16	31%		
Jumlah	52	100%		

Setiap kapal pasti memiliki berat kotor, dengan analisis dan data yang ada dapat mengetahui berat kotor setiap kapalnya.

Tabel 7 Hasil Analisis Berat Kotor Kapal (GRT)

Uraian	GRT
Rata – rata	5,644
Maksimum	15,351
Minimum	2,553

Tabel 8 Hasil Analisis Distribusi Kapal Berdasarkan

Berat

Selang GRT	Unit	Persen
2553 - 4381	24	46%
4382 - 6210	15	29%
6211 - 8038	3	6%
8039 - 9866	4	8%
9867 - 11694	3	6%
11695 - 13523	2	4%
13524 - 15351	1	2%
Jumlah	52	100%

Uraian kapasitas penumpang dan uraian kapasitas kendaraan dapat dilihat pada tabel dibawah ini:

Tabel 9 Hasil Analisis Kapasitas Penumpang Kapal (Orang)

Uraian Kapasitas Penumpang	Orang
Rata – rata	945
Maksimum	1,611
Minimum	400

Tabel 10 Hasil Analisis Kapasitas Kendaraan Kapal (Unit)

Uraian Kapasitas Kendaraan	Unit
Rata – rata	114
Maksimum	262
Minimum	46

4.3 Analisis Faktor Muat Kapal Penyeberangan

Faktor Muat adalah jumlah produksi angkutan yang dapat diangkut oleh kapal dibandingkan dengan kapasitas yang disediakan. Faktor muat merupakan petunjuk hubungan antara permintaan dan penawaran angkutan pada suatu lintasan, faktor muat yang rendah mungkin akan menyebabkan kerugian pada pengelola angkutan kapal. Faktor muat yang tinggi merupakan gambaran dari tingkat pendapatan yang tinggi dari pengoperasian kapal tersebut. Berikut Tabel kapasitas tersedia Kapal penyeberangan Lintasan Merak – Bakauheni.

Tabel 10 Kapasitas Angkut Tersedia Kapal Penyeberangan Lintas Merak – Bakauheni

No	Nama Kapal	Kapasitas Tersedia		
		Penumpang	Kendara	
			an	
1	Jatra I	1,063	70	
2 3	Jatra II	1,222	70	
3	Jatra III	1,063	70	
4	Port Link	1,476	172	
5	Port Link III	1,476	262	
6	Port Link V	750	68	
7	Menggala	996	138	
8	Mufidah	873	118	
9	Duta Banten	791	162	
10	Jagantara	650	212	
11	Rajarakata	604	227	
12	Virgo 8	800	252	
13	Nusa Dharma	734	58	
14	Nusa Jaya	1,375	148	
15	Nusa Mulia	587	132	
16	Nusa Setia	671	62	
17	Nusa Agung	491	127	
18	Nusa Bahagia	643	68	

19	Windu Karsa Pratama	1,300	88
20	Windu Karsa Dwitya	1,150	83
21	Bahuga Pratama	714	63
22	Mutiara Persada I	1,611	187
23	Mutiara Persada II	600	46
24	HM. Baruna	1,067	103
25	Rajabasa I	916	93
26	Titian Murni	948	90
27	Prima Nusantara	726	46
28	Panorama Nusantara	1,332	172
29	Royal Nusantara	1,336	112
30	Mitra Nusantara	1,079	118
31	Titian Nusantara	1,300	112
32	Safira Nusantara	1,079	122
33	BSP I	1,045	88
34	Victorius 5	959	94
35	BSP III	1,224	167
36	Ontoseno 1 BSP II	600	102
37	Tribuana	741	182
38	SMS Kertanegara	1,036	76
39	SMS Mulawarman	1,036	56
40	Mustika Kencana	1,302	88
41	Dharma Kencana IX	1,165	46
42	Dharma Rucitra I	1,302	247
43	Kirana II	1,079	152
44	Caitlyn	957	83
45	Munic I	663	46
46	Elysia	600	103
47	Shalem	800	66
48	Salvatore	1,279	182
49	Sakura Ekspress	550	48
50	Suki 2	500	128
51	Trimas Laila	400	96
52	Rosmala	460	48
	Kapasitas Total	49,121	5,949
	Kapasitas Rata - rata	945	114

4.3.1 Faktor Muat Penumpang

Sebelum menganalisis faktor muat, harus dihitung terlebih dahulu kapasitas terpakai dan kapasitas tersedia.

Tabel 11 Faktor Muat Penumpang Kapal Penyeberangan Lintas Merak – Bakauheni Pada Tahun 2014

Pen	Penumpang					
No	Bulan	Kapasitas	Trip	Kapasitas		
		Terpakai		Tersedia		
1	Jan	739,647	2,603	2,459,835		
2	Feb	570,068	2,341	2,212,245		
3	Mar	652,715	2,433	2,299,185		
4	Apr	612,623	2,412	2,279,340		
5	May	690,720	2,436	2,302,020		
6	Jun	734,596	2,270	2,145,150		
7	Jul	1,144,656	2,715	2,565,675		
8	Aug	950,122	2,679	2,531,655		
9	Sep	648,623	2,601	2,457,945		
10	Oct	731,992	2,538	2,398,410		
11	Nov	599,219	2,412	2,279,340		
12	Dec	819,228	2,618	2,474,010		

Tabel 12 Hasil Analisis Faktor Muat Penumpang Kapal Penyeberangan Lintas Merak – Bakauheni Pada Tahun 2014

Pen	Penumpang					
No	Bulan	Kapasitas Terpakai	Kapasitas Tersedia	Load Factor		
1	Jan	739,647	2,459,835	30.07%		
2	Feb	570,068	2,212,245	25.77%		
3	Mar	652,715	2,299,185	28.39%		
4	Apr	612,623	2,279,340	26.88%		
5	May	690,720	2,302,020	30.00%		
6	Jun	734,596	2,145,150	34.24%		
7	Jul	1,144,656	2,565,675	44.61%		
8	Aug	950,122	2,531,655	37.53%		
9	Sep	648,623	2,457,945	26.39%		
10	Oct	731,992	2,398,410	30.52%		
11	Nov	599,219	2,279,340	26.29%		
12	Dec	819,228	2,474,010	33.11%		

4.3.2 Faktor Muat Kendaraan

Sebelum menganalisis faktor muat, harus dihitung terlebih dahulu kapasitas terpakai dan kapasitas tersedia.

Tabel 13 Faktor Muat Kendaraan Kapal Penyeberangan Lintas Merak – Bakauheni Pada Tahun 2014

Ken	Kendaraan					
		Kapasitas		Kapasitas		
No	Bulan	Terpakai	Trip	Tersedia		
1	Jan	156,866	2,603	296,742		
2	Feb	133,569	2,341	266,874		
3	Mar	152,286	2,433	277,362		
4	Apr	143,203	2,412	274,968		
5	May	160,214	2,436	277,704		
6	Jun	161,822	2,270	258,780		
7	Jul	263,984	2,715	309,510		
8	Aug	191,006	2,679	305,406		
9	Sep	151,231	2,601	296,514		
10	Oct	168,272	2,538	289,332		
11	Nov	142,515	2,412	274,968		
12	Dec	173,910	2,618	298,452		

Tabel 14 Hasil Analisis Faktor Muat Kendaraan Kapal Penyeberangan Lintas Merak – Bakauheni Pada Tahun 2014

Ken	Kendaraan					
		Kapasitas	Kapasitas	Load		
No	Bulan	Terpakai	Tersedia	Factor		
1	Jan	156,866	296,742	52.86%		
2	Feb	133,569	266,874	50.05%		
3	Mar	152,286	277,362	54.91%		
4	Apr	143,203	274,968	52.08%		
5	May	160,214	277,704	57.69%		
6	Jun	161,822	258,780	62.53%		
7	Jul	263,984	309,510	85.29%		
8	Aug	191,006	305,406	62.54%		
9	Sep	151,231	296,514	51.00%		
10	Oct	168,272	289,332	58.16%		
11	Nov	142,515	274,968	51.83%		
12	Dec	173,910	298,452	58.27%		

4.4 Analisis Kinerja Pelabuhan Penyeberangan

1. Tingkat Penggunaan Dermaga di Pelabuhan Penyeberangan Merak – Bakauheni Tingkat penggunaan dermaga atau yang sering dikenal dengan *Berth Occupancy Ratio* (BOR) yaitu perbandingan antara jumlah waktu pemakaian tiap dermaga yang tersedia dengan

jumlah waktu yang tersedia atau waktu beroperasi pelabuhan yang dinyatakan dalam persentase. Pelabuhan Merak memiliki 5 dermaga.

Berikut tingkat penggunaan Dermaga di Pelabuhan Merak. Untuk melihat persentase tingkat penggunaan dermaga atau BOR maka dengan data sekunder yang didapat untuk menghitung BOR maka menggunakan rumus sebagai berikut;

Tabel 15 Hasil Analisis Penggunaan Dermaga di Pelabuhan Penyeberangan Merak – Bakauheni Pada Tahun 2014

		Derm		111 201-				
No	Bulan	I	II	Ш	IV	V	Hari	Wakt
								u
								(Jam)
1	Jan	611	614	527	424	427	31	744
2	Feb	559	565	440	387	390	28	672
3	Mar	615	624	491	426	277	31	744
4	Apr	583	588	467	414	360	30	720
5	May	588	599	487	362	400	31	744
6	Jun	562	560	459	331	358	30	720
7	Jul	637	623	533	436	486	31	744
8	Aug	630	615	537	424	473	31	744
9	Sep	590	599	504	429	494	30	720
10	Oct	624	618	522	292	482	31	744
11	Nov	578	573	467	365	448	30	720
12	Dec	612	620	508	399	479	31	744
Tota	Total tahun							
201	4	7,189	7,198	5,942	4,689	5,074	365	8,760

Hasil persentase perhitungan tingkat penggunaan dermaga di pelabuhan merak dapat dilihat pada tabel berikut ini:

Tabel 16 Hasil Analisis Persentase Penggunaan Dermaga di Pelabuhan Penyeberangan Merak – Bakauheni Pada Tahun 2014

No	Dermaga	Persentase Penggunaa Dermaga di Pelabuha Merak
1	1	82.07%
2	2	82.17%
3	3	67.83%
4	4	53.53%
5	5	57.92%
L	Rata - rata	68.70%

2. Waktu Yang Hilang atau Berth Idle Time (BIT) di Pelabuhan Penyeberangan Merak - Bakauheni Waktu Yang Hilang atau Berth Idle Time (BIT) dapat diartikan sebagai jumlah waktu dermaga dalam keadaan kosong karena tidak digunakan oleh kapal untuk sandar, bongkar/muat dan lainnya baik karena sedikitnya permintaan, karena kelalaian petugas atau pengaruh alam (ombak dll). Persentase perhitungan BIT di Pelabuhan Merak dapat dilihat pada tabel berikut ini:

Tabel 17 Hasil Analisis Persentase Penggunaan Dermaga di Pelabuhan Penyeberangan Merak – Bakauheni Pada Tahun 2014

No	Dermaga	Waktu yang Hilang / BIT di Pelabuhan Merak (%)
1	1	17.93%
2	2	17.83%
3	3	32.17%
4	4	46.47%
5	5	42.08%
	Rata - rata	31.30%

4.5 Analisis Peramalan Produktivitas Angkutan

Untuk analisis peramalan poduktivitas angkutan penyeberangan di lintas Merak — Bakauheni dilakukan dengan beberapa metode peramalan. Analisis dengan menggunakan beberapa metode ini hanya ingin mengetahui peramalan yang manakah yang lebih mendekati dan akurat dengan data yang ada. Berikut data Produksi Penumpang dan kendaraan di Pelabuhan Penyeberangan Merak-Bakauheni pada tahun 2010 sampai dengan tahun 2014.

Tabel 18 Data Produksi Penumpang dan Produksi Kendaraan Pelabuhan Penyeberangan Merak – Bakauheni Pada Tahun 2010-2014

NO	TAHUN	DATA JUMLAH PENUMPANG	DATA JUMLAH KENDARAAN
1	2010	1,400,986	1,773,665
2	2011	1,347,335	1,964,725
3	2012	1,398,765	2,045,952
4	2013	1,459,120	2,009,351
5	2014	1,652,565	1,998,878

1. Peramalan Menggunakan Metode *Coumpound Interst*

Peramalan pengguna jasa dimasa yang akan datang dapat dilakukan dengan menggunakan metode *Compound Interst*.

Dari perhitungan yang dilakukan menggunakan metode *compound interst* dihasilkan peramalan untuk penumpang dan kendaraan di tahun 2015 – 2019 sebagai berikut:

Tabel 19 Peramalan Produktivitas Penumpang dan Kendaraan Kapal Penyeberangan Lintas Merak – Bakauheni Tahun 2015 - 2019

NO	TAHUN	JUMLAH PERAMALAN PENUMPANG	JUMLAH PERAMALAN KENDARAAN
1	2015	1,725,278	1,985,885
2	2016	1,801,190	1,972,977
3	2017	1,880,442	1,960,153
4	2018	1,963,181	1,947,412
5	2019	2,049,560	1,934,754

 Peramalan Menggunakan Metode Geometri Peramalan pengguna jasa dimasa yang akan datang dapat dilakukan dengan menggunakan metode Geometri.

$$Pt = Po (1 + r)^t$$

dimana:

Pt = Jumlah Penumpang pada tahun t Po = Jumlah Penumpang pada tahun dasar

= Bilangan Ketetapan/konstan

r = Rate/laju pertumbuhan

Penumpang t = Tahun sebelumnya

Dengan menggunakan metode Geometri dapat juga dihitung Analisa Pemilihan model proyeksinya seperti pada tabel berikut:

Tabel 20 Rumus Model Proyeksi

Model Proyeksi	Rumus
Eksponential	
	$y = b \cdot e^{ax}$
Linier	
	y = ax + b
Logarithmic	
	y = aln(x) +
Polynomial	
	$y = ax^2 + ax$
Power	_
	$y = bx^{\alpha}$

Berdasarkan hasil peramalan pada tahun 2015 dari metode geometri dan model proyeksi (eksponential, linear, logarithmic, polynimial dan power), maka dari metode — metode tersebut dipilihlah hasil dari metode polynimial, dikarenakan hasil peramalan untuk 5 tahun kedepan terlihat lebih mendekati data jumlah kendaraan pada tahun sebelumnya.

Tabel 21 Hasil Analisis Peramalan Produktivitas Penumpang dan Kendaraan Kapal Penyeberangan Lintas Merak – Bakauheni Tahun 2015 – 2019

NO	TAHUN	JUMLAH PERAMALAN PENUMPANG	JUMLAH PERAMALAN KENDARAAN
1	2015	2,020,525	2,009,933
2	2016	2,112,924	3,632,225
3	2017	2,277,197	4,163,056
4	2018	2,513,344	4,768,301
5	2019	2,821,365	5,447,960

4.6 Analisis Lalu Lintas Kapal 4.6.1 RTT (Round Trip Time)

RTT merupakan lamanya perjalanan angkutan bolak – balik dari satu titik ke titik lainnya. RTT = (Running Time + Layover Time) x 2

- a. Running Time (Waktu Perjalanan) Data mengenai jarak dan waktu tempuh lintas penyeberangan Merak Bakauheni yaitu 15 mil laut atau 2 jam.
- Layover Time (Waktu Kapal di dermaga)
 Untuk mengetahui layover time tiap kapal di Pelabuhan Penyeberangan Merak – Bakauheni yaitu 60 menit atau 1 jam.

Setelah mengetahui waktu perjalanan (Running Time) dan waktu kapal di dermaga (Layover Time) maka dapat diketahui RTT (Round

Trip Time) atau waktu perjalanan bolak – balik tiap kapal pada lintas penyeberangan Merak – Bakauheni yaitu dengan menggunakan persamaan berikut :

4.7 Analisis Frekuensi Keberangkatan Kapal

a. Berdasarkan Analisis Frekuensi Keberangkatan Kapal Yang Ideal Untuk frekuensi keberangkatan kapal dihitung berdasarkan jumlah kendaraan dan jumlah penumpang yang naik turun per tahun. Berikut ini adalah perhitungan frekuensi keberangkatan kapal.

Dilihat dari sisi Pelabuhan Penyeberangan Merak Berdasarkan Jumlah kendaraan

Nk= (1,773,665) Produksi Kendaraan tahun 2014 di Pelabuhan Merak

Maka untuk perhitungan FP yaitu:

FP =
$$\frac{N}{365 \times K \times LF \times M}$$

= $\frac{1,773,665}{365 \times 0.7 \times 0.60 \times 114}$
= $\frac{1,773,665}{17,476}$
= 101 trip / hari

Dengan demikian dapat disimpulkan bahwa Frekuensi Keberangkatan Kapal pada prediksi Tahun 2015 – 2019 sebagai berikut :

Tabel 4.22 Hasil Analisis Prediksi Frekuensi Keberangkatan Kapal Penyeberangan Lintas Merak – Bakauheni Pada Tahun 2015 - 2019

No	Tahun	Jumlah Kendaraan	Frekuensi Keberangkatan Kapal Trip/Hari
1	2015	2,009,933	115
2	2016	3,632,225	208
3	2017	4,163,056	238
4	2018	4,768,301	273
5	2019	5,447,960	312

4.8 Analisis Kemampuan Trip Kapal

Formulasi yang dipergunakan adalah sebagai berikut:

$$RT = \frac{\text{Jorn Opercoal Pelabraham}}{(5T + 5TET) \times 2}$$

$$= \frac{24 \text{ jam}}{(2 \text{ jam} + 1 \text{ Jam}) \times 2}$$

$$= \frac{24 \text{ jam}}{6 \text{ jam}}$$

$$= 4 \text{ trip/kapal}$$

Idealnya kapal melakukan perjalan dalam satu hari yaitu 4 trip per satu kapal, jika lebih dari trip yang ada maka perlu dilakukan penambahan kapal. Karena apabila kapal terus beroperasi dalam setiap harinya tidak baik juga dan berpengaruh pada keselamatannya.

4.9. Analisis Jumlah Kebutuhan Kapal

Perhitungan jumlah kapal yang dibutuhkan adalah sebagai berikut : Berdasarkan Analisis Perhitungan Kebutuhan Kapal Yang Ideal. Baik dari sisi Pelabuhan Merak Frekuensi keberangkatan Kapal adalah 100 trip/hari, sehingga kebutuhan kapal yang ideal yaitu :

5. Penutup

Berdasarkan hasil penelitian "Evaluasi Aktivitas Operasional Angkutan Penyeberangan Lintas Merak - Bakauheni" dapat ditarik beberapa kesimpulan sebagai berikut:

5.1 Kesimpulan

Hasil dari analisis kebutuhan dan lalu lintas kapal, Jumlah Angkutan Penyeberangan yang ada untuk melayani penyeberangan lintasan Merak – Bakauheni saat ini yaitu 52 kapal dan yang beroperasi setiap harinya berjumlah 24 kapal dengan frekuensi keberangkatan kapal 100 trip/hari. Namun setelah dilakukannya analisis kebutuhan kapal untuk melayani angkutan penumpang dan kendaraan di lintas Merak – Bakauheni yaitu seharusnya 29 kapal setiap harinya dengan frekuensi keberangkatan kapal 115 trip/hari dan berdasarkan analisa peramalan maka setiap

tahunnya pelabuhan penyeberangan lintas Merak – Bakauheni memerlukan tambahan kapal untuk memenuhi setiap trip/hari sehingga mengurangi antrean kendaraan yang terjadi di pelabuhan penyeberangan Merak. Hasil dari analisis sistem pola operasional dan kinerja Angkutan Penyeberangan lintasan Merak Bakauheni belum dapat mencapai standar trip masing - masing kapal yang telah ditetapkan oleh pemerintah dalam penyelenggarannya dilakukan oleh Kantor Otoritas Pelabuhan Penyeberangan Dari hasil analisis tentang kinerja pengunaan dermaga di Pelabuhan Merak persentase penggunaan dermaga tertinggi di pelabuhan merak yaitu di dermaga 2 dengan persentase 82,07 % dan terendah pada dermaga 4 dengan persentase 53,53 %. Dan dari persentase tersebut dapat dilihat bahwa untuk penggunaan dermaga 1 dan dermaga 2 termasuk dermaga yang sering digunakan angkutan penyeberangan lintas Merak – Bakauheni. Berdasarkan hasil dari analisis permintaan angkutan penyeberangan lintasan Merak - Bakauheni mengalami naik turun permintaan dari setiap tahunnya. Produksi tertinggi penumpang pada tahun 2010 - 2014 yaitu terjadi pada tahun 2014 dengan jumlah produksi 1,652,565 orang. Sedangkan produksi penumpang terendah terjadi pada tahun 2011 dengan jumlah produksi 1,347,335 orang. Produksi Kendaraan tertinggi terjadi pada tahun 2012 dengan produksi 2,045,952 unit dan terendah pada tahun 2010 dengan produksi 1,773,665 unit.

5.2 Saran

Beberapa saran yang dapat diberikan penulis untuk penelitian lebih lanjut adalah sebagai beriku:

- a. Perlu adanya peningkatan pelayanan angkutan dan pelabuhan penyeberangan dengan memberikan fasilitas sarana dan prasarana yang lebih baik agar pelayanan terhadap pengguna jasa dapat optimal.
- b. Perlu adanya penertiban kembali mengenai jadwal keberangkatan kapal sehingga trip yang telah ditetapkan oleh pemerintah yang dalam penyelenggarannya dilakukan oleh Kantor Otoritas Pelabuhan Penyeberangan Merak dapat tercapai yaitu 100 trip dengan demikian tidak akan ada lagi antrian kendaraan akibat keterlambatan jadwal kapal penyeberangan.
- Untuk mengatasi permintaan akan angkutan penyeberangan di pelabuhan penyeberangan lintasan Merak – Bakauheni yang relative tinggi terjadi keadaan pada saat padat (Peak)

pada shift malam maka pemerintah yang dalam penyelenggarannya dilakukan oleh Kantor Otoritas Pelabuhan Penyeberangan Merak dan operator penyelenggara yang dalam hal ini dikelola oleh PT. Indonesia Ferry Persero (ASDP) mengatur agar kendaraan langsung masuk ke kapal penyeberangan yang beroperasi di pelabuhan sehingga waktu pelayanan kapal di pelabuhan dapat diterapkan dan tidak terjadi antrian kendaraan di pelabuhan penyeberangan lintasan Merak – Bakauheni.

d. Berdasakan hasil evaluasi angkutan penyeberangan lintas Merak – Bakauheni jika kebutuhan kapal sudah memenuhi permintaan tetapi masih terjadi antrian di Pelabuhan Merak mungkin perlu ditingkatkan lagi dalam segi pelayanannya dari loket tiket sampai angkutan kendaraan yang masuk ke area parkir atau masuk ke kapal

Daftar Pustaka

- [1] Undang-undang Nomor 17 tahun 2008 tentang Pelayaran; Ofyar Z. Tamin, " Perencanaan dan Pemodelan Transpotasi ", Edisi kedua, Penerbit ITB, Bandung, 2000.
- [2] Iskandar Abubakar, "Transportasi Penyebrangan 2010 suatu Pengantar" Jakarta, 2010
- [3] Evy Fitriani, "Analisis Penetapan Tarif Disesuaikan Dengan Ekspektasi Penumpang Terhadap Pelayanan Kapal Ro-ro Lintas Merak- Bakauheni "Tesis Program Pasca Sarjana Bidang Ilmu Teknik, Program Studi Transportasi Teknik Sipil, 2011.
- [4] C. Jotin Khisty dan B. Kent Lall, "Dasar-Dasar Rekayasa Transportasi, jilid 2, edisi ketiga, Erlangga, Jakarta 2005
- [5] Consulindo, Santika, "Masterplan Pelabuhan Penyeberangan Merak – Bakauheni "Laporan Akhir. 2012.